Search results

1 – 10 of 688
Article
Publication date: 7 March 2016

S. Vinodh and Sharath Kumar T.

– The purpose of this paper is to report a study in which creative design concepts have been applied to automotive brake rotor design.

Abstract

Purpose

The purpose of this paper is to report a study in which creative design concepts have been applied to automotive brake rotor design.

Design/methodology/approach

The literature review on creative design concepts and braking system scenario has been carried out. By studying the existing brake rotors and applying creative design concepts, modified rotor designs have been developed.

Findings

The experience gained out of the study indicated that braking efficiency and durability of the braking system can be significantly improved by the adoption of proposed designs.

Research limitations/implications

The research has been carried out for an automotive passenger car. The findings of this research work could be extended to similar models of buses and trucks.

Practical implications

The usage of the proposed designs reduces the driver’s effort in braking and adds significantly to the life of the rotors.

Originality/value

A case study has been reported to indicate the application of creative design concepts for enhancing the efficiency of automotive braking system in cars.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 May 2008

Leszek Wawrzonek and Ryszard A. Białecki

This paper seeks to develop a reliable simulation technique and experimental equipment applicable to thermal analysis of disk brakes. The application is focused on safety issues…

1440

Abstract

Purpose

This paper seeks to develop a reliable simulation technique and experimental equipment applicable to thermal analysis of disk brakes. The application is focused on safety issues arising in coal mines and other hazardous explosive environments.

Design/methodology/approach

The experimental rig provides data on the friction power generated by the disk‐pad pair for a user‐defined squeezing force program. The developed software predicts the temperature field in the brake and pad. The code is based on the finite volume approach and is formulated in Lagrangian coordinates frame.

Findings

In the circumferential direction advection due to the rotation of the disk dominates over the conduction. The energy transfer problem could be formulated in a Lagrange coordinates system as 2D. A novel approach to the estimation of the uncertainty of numerical simulations has been proposed. The technique is based on the GUM methodology and uses sensitivity coefficients determined numerically. Very good agreement of simulated and measured values of temperature in the brake has been found.

Research limitations/implications

The results apply for simple disk and pad geometries for which the correlations of the Nusselt number versus Reynolds and Prandtl are known. Moreover, the model should not be used in the last braking period where the assumption of negligible circumferential conduction is not applicable. Though the code models a situation of constant rotation speed, the deceleration profile of the disk can readily be accounted for. The next step of the research should be to couple the heat conduction in the brake with CFD simulation of the surrounding air.

Practical implications

The highest temperature in the system is at the pad‐disk interface. The depth of penetration of the temperature into the disk is relatively low. The heat dissipation from the disk is controlled by convection.

Originality/value

The novelty of the paper is in the simplified and robust simulation model of the brake, the concept of the experimental rig and the methodology of uncertainty assessment. The developed methodology can be useful to researchers and industry involved in safety investigations and determining safety standards, specifically in explosive atmospheres. It may also be of interest to the automotive industry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 May 2022

Vinoth Kumar K., Loganathan T.G. and Jagadeesh G.

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Abstract

Purpose

The Purpose of this study is to prove the possibility of developing low cost mechanical anti – lock braking system (ABS) for the passenger’s safety.

Design/methodology/approach

The design methodology of the proposed newer mechanical ABS comprises of two units, namely, the braking unit and wheel lock prevention unit. The braking unit actuates the wheel stopping as and when the driver applies the brake, whereas the wheel lock prevention unit initiates wheel release to prevent locking and subsequent slip/skidding. The brake pedal with master cylinder assembly and double-arm cylinder forms the braking unit, brake pad cylinder, movable brake pad, solenoid valve and dynamo forms the wheel lock prevention unit. The dynamo coupled with the rotor energises/de-energises the solenoid values to direct airflow for applying brake and release it, which makes the system less energy-dependent.

Findings

The braking unit aids in vehicle stops, by locking the disc with the brake pad actuated by a double-arm cylinder. The dynamo energises the solenoid valve to activate the brake pad cylinder piston for applying the brake on the disc. Instantaneously, on applying the brake the dynamo de-energises the solenoid to divert the pneumatic flow for retracting the brake pad thereby minimizing the braking torque. The baking torque reduction revives the wheel rotating and prevents slip/skidding.

Originality/value

Mechanical ABS preventing wheel lock by torque reduction principle is a novel method that has not been evolved so far. The system was designed with repair/replacement of the parts and subcomponents to support higher affordability on safety grounds.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 June 2021

Oualid Araar, Kheireddine Benjdia and Ivan Vitanov

The widespread use of drones among the general public has led to an alarming increase in accidents, some with lethal consequences. As drone blades are made from rigid materials…

Abstract

Purpose

The widespread use of drones among the general public has led to an alarming increase in accidents, some with lethal consequences. As drone blades are made from rigid materials and rotate at very high speeds, their impact with a human body can result in fatal injuries. Reliable collision detection combined with near-instantaneous braking of the drone’s rotor(s) can substantially lessen the severity of injuries sustained. The purpose of this paper is to achieve a safety solution which can be easily integrated into new products, or retrofitted into existing systems.

Design/methodology/approach

Through a proof of concept, this paper demonstrates the possibility of detecting a collision with a drone propeller absent any hardware modifications to the drone’s instrumentation. The solution relies on current-sensor readings, ordinarily used for monitoring the battery status of electrically actuated drones. The braking is achieved purely by reconfiguring the motor’s control strategy, without the need for additional hardware, as has been the case in previous works.

Findings

This paper demonstrates the possibility of detecting a collision with a drone propeller absent any hardware modifications to the drone’s instrumentation.

Originality/value

Compared to previous works which require installing additional hardware, the solution is purely software. This makes it very easy to integrate into existing systems or new products, at no additional cost. In experiments conducted on a prototype system, the solution was shown capable of detecting a collision and braking the motor in fewer than 20 ms. This allowed attenuating centimetre-deep cuts made to a piece of meat by an unprotected rotor to mere superficial scratches.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 August 2020

Ali Belhocine and Oday Ibraheem Abdullah

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal…

Abstract

Purpose

This study aims to investigate numerically a thermomechanical behavior of disc brake using ANSYS 11.0 which applies the finite element method (FEM) to solve the transient thermal analysis and the static structural sequentially with the coupled method. Computational fluid dynamics analysis will help the authors in the calculation of the values of the heat transfer (h) that will be exploited in the transient evolution of the brake disc temperatures. Finally, the model resolution allows the authors to visualize other important results of this research such as the deformations and the Von Mises stress on the disc, as well as the contact pressure of the brake pads.

Design/methodology/approach

A transient finite element analysis (FEA) model was developed to calculate the temperature distribution of the brake rotor with respect to time. A steady-state CFD model was created to obtain convective heat transfer coefficients (HTC) that were used in the FE model. Because HTCs are dependent on temperature, it was necessary to couple the CFD and FEA solutions. A comparison was made between the temperature of full and ventilated brake disc showing the importance of cooling mode in the design of automobile discs.

Findings

These results are quite in good agreement with those found in reality in the brake discs in service and those that may be encountered before in literature research investigations of which these will be very useful for engineers and in the design field in the vehicle brake system industry. These are then compared to experimental results obtained from literatures that measured ventilated discs surface temperatures to validate the accuracy of the results from this simulation model.

Originality/value

The novelty of the work is the application of the FEM to solve the thermomechanical problem in which the results of this analysis are in accordance with the realized and in the current life of the braking phenomenon and in the brake discs in service thus with the thermal gradients and the phenomena of damage observed on used discs brake.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 June 2002

Herbert De Gersem and Kay Hameyer

A magnetic brake with a solid iron cylinder rotating at high speeds is considered. The rotor iron is both conductive and permeable. The magnetisation curve is non‐linear. Special…

Abstract

A magnetic brake with a solid iron cylinder rotating at high speeds is considered. The rotor iron is both conductive and permeable. The magnetisation curve is non‐linear. Special attention is paid to the correct integration of the angular velocity term. A Newton‐Raphson scheme dealing with the non‐linear material characteristics is applied. The numerical oscillations appearing in the finite element model at high velocities are overcome by an adaptive mesh refinement technique combined with the artificial diffusion upwind technique. End effects due to the finite length of the rotor are incorporated by an electric circuit coupling. Simulations are performed to study the influence of the saturation of the moving rotor upon the speed‐torque characteristic of the magnetic brake. It is remarkable that in the case of this solid rotor magnetic brake, the saturation of the rotor iron has a beneficial influence on the device performance.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 21 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 January 1934

AIRCRAFT of the type known under the Registered Trade Mark “Autogiio,” have means for controllably tilting the rotor axis in relation to the body in one or more substantially…

Abstract

AIRCRAFT of the type known under the Registered Trade Mark “Autogiio,” have means for controllably tilting the rotor axis in relation to the body in one or more substantially vertical planes about real or virtual pivot axes, any such pivot axis being located above the centre of gravity of the aircraft, below the point of intersection of the rotor axis with the projection of the line of resultant aerodynamic action of the rotor on a plane containing both the rotor axis and the shortest distance between the rotor axis and the pivot axis, and offset from the rotor axis in the direction of the aerodynamic reaction line. Figs. 2 and 5 show diagrammatically an aircraft having a body b, a rotor comprising blades r, r, connected by horizontal hinges a, a, to a rotor hub having an axis of rotation 0, 0. Lines 0–0, 1–1, 2–2, etc., represent the projections on the plane of the paper of the aerodynamic reaction lines corresponding to successively reduced angles of incidence of the rotor, line 0–0 representing the reaction line for an angle of incidence of 90 deg. corresponding to vertical descent, line 5–5 representing that corresponding to a small angle of incidence corresponding to maximum flight speed. These projection lines intersect at a focal point f1, the height of which above the hinges a, a depends upon the degree of separation thereof, this height being zero when the hinges a, a are coaxial and intersect the axis of rotation. The transverse axis about which the rotor may be tilted is shown at p2 and is disposed below the point f1 and forward of the axis of rotation 0, 0. In the limiting case where the hinges a, a are coaxial p2 may pass through the point of intersection of the hinges with the axis 0–0. Fig. 5 shows how the longitudinal pivot axis p5 for lateral tilting of the rotor is displaced from the axis of rotation 0–0 in the direction of the aerodynamic reaction line, i.e., in the direction of the re‐treating blade. The transverse pivot p2 for longitudinal rotor tilting is located rearwardly of the centre of gravity, the perpendicular from the centre of gravity on the pivot making an angle of the order of 6 deg. with the perpendicular to the longitudinal body axis. Means may also be provided for bodily displacing the rotor longitudinally of the aircraft whereby the attitude of the body to the line of flight may be controlled in the plane of symmetry, independently of the flying speed and of the position of the centre of gravity. In one embodiment, Fig. 6, a pyramid of struts 36 supports a rotor comprising blades 38 secured to a hub 37 by horizontal pivots 39, links 40, and vertical pivots 41. Hub 37 is mounted on an axis member 78, Figs. 9 and 10, pivotally mounted on pyramid 36 by means of a transverse pivot 42 and a longitudinal pivot 43, Fig. 8. Pyramid struts 36 are bolted to an apex member 71 incorporating a fork 72, Fig. 10, carrying transverse pivot 42 on which is rotatably mounted an intermediate member incorporating an offset backward projection constituting the longitudinal pivot 43 and a downward projection 76 which serves to limit rocking of member 74 about the pivot 42 by co‐operation with the sides of a shot 71x formed in apex member 71. Rocking movement of axis member 78 in pivot 43 is limited by integral lugs 80 which embrace the projection 76. Movements of part 74 about pivot 42 and of axis member 78 about pivot 43 are damped by spring‐loaded friction discs 148, 153 respectively, the pressure on which may be varied by adjusting their respective nuts 151, 156. As shown in Fig. 9, an internal expanding rotor brake and rotor starting gear are associated with the axis member 78, the latter gear including a dog clutch permitting over‐running of the rotor with respect to the drive shaft. Means for controlling the rotor tilting movements comprise levers 48, 52 respectively associated with the intermediate member 74 and the axis member 78. Lever 48 is coupled to a bell crank 46, Fig. 6, by a rod 47, and lever 52 is coupled to a lever 50, Fig. 8, on a longitudinal rock shaft 49 by rod 51, bell crank 46 and rock shaft 49 being operated by a conveniently arranged control column 44. Rods 47, 51 are tubular and are connected to their respective levers 48, 52 by resilient connections comprising columns of rubber rings 106, Fig. 9, which bear against abutments 107 fixed in the bore of the rod and against a collar 108 formed on a slidable rod 109 which is connected to the operating lever by a forked shackle 110, in the case of rod 47, and by a shackle 111 and an eyed swivel 112, Fig. 10, in the case of rod 51. Means are provided for imposing an elastic bias on either control: these comprise in the case of the fore‐and‐aft control two lengths 116 of shock absorber elastic, Fig. 11, coupled at one end to a lever 115 on shaft 113 of bell crank 46, and at the other by cables 117 to an adjustable lever 119 working in a quadrant 120. Similarly, shock absorbers 123 are coupled to a lever 122 on rock shaft 49 and are connected by cables 124, Fig. 12, passed round pulleys 126 to a lever 127 mounted on a subsidiary rock shaft 128, the angular position of which is controlled by a ratchet lever 129, Fig. 11. Shackles 118 are adjustable for varying the initial stress in elastics 116 and turnbuckles 125 are placed in the run of cables 124. In addition to control column 44, a rudder bar 55 is provided operating a rudder 54, Fig. 6, and a steerable tail wheel 64, and a lever 62 for adjusting a tail plane 57. All these controls may be locked in any adjusted position, lever 62 by a ratchet 63 and the remainder by means of friction clamps 141, 142, 143 respectively, Figs. 11 and 12. Clamp 141 locks a slotted lever 140 fast on rock shaft 49 to a fixed fuselage member. Similarly clamp 135 co‐operates with a slotted plate 134, linked by rod 133 to a lever, 132, on rock shaft 113. Clamp 143 co‐operates with a slotted plate 142, inserted in the run of a rudder cable 56x.

Details

Aircraft Engineering and Aerospace Technology, vol. 6 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 2004

W. Szeląg, P. Sujka and R. Walendowski

This paper deals with coupled electromagnetic, hydrodynamic and mechanical motion phenomena in magnetorheological fluid brakes. The governing equations of these phenomena are…

Abstract

This paper deals with coupled electromagnetic, hydrodynamic and mechanical motion phenomena in magnetorheological fluid brakes. The governing equations of these phenomena are presented. The numerical implementation of the mathematical model is based on the finite element method and a step‐by‐step algorithm. A computer program based on this algorithm was used to simulate the transients in a prototype of magnetorheological brake. The results of the calculations and measurements are presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 2004

Wojciech Szeląg

Deals with coupled electromagnetic, hydrodynamic, thermodynamic and mechanical motion phenomena in magnetorheological fluid brake. Presents the governing equations of these…

Abstract

Deals with coupled electromagnetic, hydrodynamic, thermodynamic and mechanical motion phenomena in magnetorheological fluid brake. Presents the governing equations of these phenomena. The numerical implementation of the mathematical model is based on the finite element method and a step‐by‐step algorithm. In order to include non‐linearity, the Newton‐Raphson process has been adopted. The method has been successfully adapted to the analysis of the coupled phenomena in the magnetorheological fluid brake. Present the results of the analysis and measurements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 August 2021

Baskara Sethupathi P. and Chandradass J.

This study aims to compare the influence of different solid lubricants on the friction stability of a non-asbestos disc brake pad.

Abstract

Purpose

This study aims to compare the influence of different solid lubricants on the friction stability of a non-asbestos disc brake pad.

Design/methodology/approach

Three brake pads were developed using three lubricants, namely, non-asbestos brake pad with sulfide mix (NASM), non-asbestos brake pad with bismuth sulfide (NABS) and non-asbestos brake pad with molybdenum disulfide (NAMO). Sulfide mix was indigenously developed by physically mixing friction modifiers, alkaline earth chemicals and various metallic sulfides homogeneously dispersed in graphite medium. The physical, chemical, mechanical and thermal properties of brake pads were characterized as per industrial standards. The tribological performances were studied using the Chase testing machine as SAE-J661-2012. The worn surface of the pads was studied using scanning electron microscope to analyze the dominating wear mechanism.

Findings

NASM was excellent in fade as well as wear resistance. NABS was better from a wear point of view, but fade resistance was moderate despite its higher cost. NAMO fared average in fade and wear despite its excellent dry lubricating properties. NASM was excellent in terms of fade as well as wear resistance.

Originality/value

Among the selected metal sulfides, the indigenously developed sulfide mix was better than the other two sulfides, which indicates that the synergetic effect of metal sulfides was always preferable to the individual sulfides.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 688