Search results

1 – 10 of 269
Article
Publication date: 10 January 2024

Biqing Ye, Kebiao Zhang, Qiang Zuo, Li Zhang and Xiaohang Shan

The purpose of this paper is to test and analyze the friction torque of double-row angular contact ball bearings under vacuum or ordinary pressure environment, horizontal or…

63

Abstract

Purpose

The purpose of this paper is to test and analyze the friction torque of double-row angular contact ball bearings under vacuum or ordinary pressure environment, horizontal or upright installation mode, and different rotational speeds, and to provide theoretical bases for the development of aerospace equipment.

Design/methodology/approach

The experiments were carried out to investigate the effects of vacuum or ordinary pressure environment, horizontal or upright installation mode and different rotational speeds on bearing friction torque. To explore the relationship between working conditions and bearing friction torque, firstly, based on the generation source of friction torque, the test principle was determined, a test system was developed and the reliability of data was verified. Secondly, the friction torque of bearing was tested, and the values under various working conditions were obtained. Finally, this paper compared and discussed the test results.

Findings

The test results show that the friction torque value of vacuum environment horizontal installation condition is the largest at different rotational speeds, and the rotational speed has the most significant influence on the friction torque.

Originality/value

The friction torque test system of double-row angular contact ball bearing under vacuum environment was designed and built. The influence rules of vacuum or ordinary pressure environment, horizontal or upright installation mode and different rotational speeds on bearing friction torque were obtained.

Peer review

The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-08-2023-0259

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 June 2023

Srinivas Naik Lonavath and Hadya Boda

This Friction stir welding study aims to weld thick AA8011 aluminium plates, and the interface joints created with a variety of tool pin profiles were examined for their effects…

Abstract

Purpose

This Friction stir welding study aims to weld thick AA8011 aluminium plates, and the interface joints created with a variety of tool pin profiles were examined for their effects on the welding process.

Design/methodology/approach

Scanning electron microscopy and optical microscopy and X-ray diffraction were used to examine the macro and micro-structural characteristics, as well as the fracture surfaces, of tensile specimens. The mechanical properties (tensile, hardness tests) of the base metal and the welded specimens under a variety of situations being tested. Additionally, a fracture toughness test was used to analyse the resilience of the base metal and the best weldments to crack formation. Using a response surface methodology with a Box–Behnken design, the optimum values for the three key parameters (rotational speed, welding speed and tool pin profile) positively affecting the weld quality were established.

Findings

The results demonstrate that a defect-free junction can be obtained by using a cylindrical tool pin profile, increasing the rotational speed while decreasing the welding speeds. The high temperature and compressive residual stress generated during welding leads to the increase in grain size. The grain size of the welded zone for optimal conditions is significantly smaller and the hardness of the stir zone is higher than the other experimental run parameters.

Originality/value

The work focuses on the careful examination of microstructures behaviour under various tool pin profile responsible for the change in mechanical properties. The mathematical model generated using Taguchi approach and parameters was optimized by using multi-objectives response surface methodology techniques.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 26 March 2024

Anuj Kumar Goel and V.N.A. Naikan

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for…

Abstract

Purpose

The purpose of this study is to explore the use of smartphone-embedded microelectro-mechanical sensors (MEMS) for accurately estimating rotating machinery speed, crucial for various condition monitoring tasks. Rotating machinery (RM) serves a crucial role in diverse applications, necessitating accurate speed estimation essential for condition monitoring (CM) tasks such as vibration analysis, efficiency evaluation and predictive assessment.

Design/methodology/approach

This research explores the utilization of MEMS embedded in smartphones to economically estimate RM speed. A series of experiments were conducted across three test setups, comparing smartphone-based speed estimation to traditional methods. Rigorous testing spanned various dimensions, including scenarios of limited data availability, diverse speed applications and different smartphone placements on RM surfaces.

Findings

The methodology demonstrated exceptional performance across low and high-speed contexts. Smartphones-MEMS accurately estimated speed regardless of their placement on surfaces like metal and fiber, presenting promising outcomes with a mere 6 RPM maximum error. Statistical analysis, using a two-sample t-test, compared smartphone-derived speed outcomes with those from a tachometer and high-quality (HQ) data acquisition system.

Research limitations/implications

The research limitations include the need for further investigation into smartphone sensor calibration and accuracy in extremely high-speed scenarios. Future research could focus on refining these aspects.

Social implications

The societal impact is substantial, offering cost-effective CM across various industries and encouraging further exploration of MEMS-based vibration monitoring.

Originality/value

This research showcases an innovative approach using smartphone-embedded MEMS for RM speed estimation. The study’s multidimensional testing highlights its originality in addressing scenarios with limited data and varied speed applications.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 2022

Thanh-Long Le, Tran Trung Nghia, Hong Duc Thong and Mai Hoang Kim Son

This paper aims to focus on the effect of the operating condition such as the impeller speed on the centrifugal fan performance and flow characteristics. The ability to predict…

Abstract

Purpose

This paper aims to focus on the effect of the operating condition such as the impeller speed on the centrifugal fan performance and flow characteristics. The ability to predict the behavior of the airflow motion in a centrifugal blower is essential for obtaining the topology optimization design.

Design/methodology/approach

A physical model of the air blower consisting of these main parts in a blower system: collector, impeller, outlet flange and volute casing, and the appropriate boundary conditions are set up by ANSYS software. Computation fluid dynamics are performed for the numerical analysis. The calculation of blower performance parameters such as total pressure, efficiency and flow rate is based on the Reynolds averaged Navier–Stokes equations and k-εturbulence flow model.

Findings

The numerical results show that the change in operating conditions has a significant effect on the blower performance, and the pressure maintained inside the blower is higher for a larger impeller rotational speed.

Originality/value

This work is original and has not yet been submitted to elsewhere or published previously.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 16 May 2023

Amit Rana, Sandeep Deshwal, Rajesh and Naveen Hooda

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these…

Abstract

Purpose

The weld joint mechanical properties of friction stir welding (FSW) are majorly reliant on different input parameters of the FSW machine. The study and optmization of these parameters is uttermost requirement and aim of this study to increase the suitability of FSW in different manufacturing industries. Hence, the input parameters are optimized through different soft computing methods to increase the considered objective in this study.

Design/methodology/approach

In this research, ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of FSW prepared butt joints of AA6061 and AA5083 Aluminium alloys materials are investigated as per American Society for Testing and Materials (ASTM E8-M04) standard. The FSW joints were prepared by changing the three input process parameters. To develop experimental run order design matrix, rotatable central composite design strategy was used. Furthermore, genetic algorithm (GA) in combination (Hybrid) with response surface methodology (RSM), artificial neural network (ANN), i.e. RSM-GA, ANN-GA, is exercised to optimize the considered process parameters.

Findings

The maximum value of UTS, YS and EL of test specimens on universal testing machine was measured as 264 MPa, 204 MPa and 14.41%, respectively. The most optimized results (UTS = 269.544 MPa, YS = 211.121 MPa and EL = 17.127%) are obtained with ANN-GA for the considered objectives.

Originality/value

The optimization of input parameters to increase the output objective values using hybrid soft computing techniques is unique in this research paper. The outcomes of this study will help the FSW using manufacturing industries to choose the best optimized parameters set for FSW prepared butt joint with improved mechanical properties.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 17 August 2021

Emanuele Quaranta, Toni Pujol and Maria Carmela Grano

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to…

1854

Abstract

Purpose

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering.

Design/methodology/approach

Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow.

Findings

Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive. Therefore, the impulse turbine should be used for higher power requirements (>3 kW), or when the electricity is delivered to the grid, maximizing the long-term profit.

Originality/value

Since there is not enough evidence about the achievable performance and cost of a VAWM repowering, this work provides expeditious tools for their evaluation.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 6 December 2022

Xinhong Zou, Hongchang Ding and Jinhong Li

This paper aims to present a sliding mode control method based on disturbance observer (DO) for improving the reaching law of permanent magnet synchronous motor (PMSM).

Abstract

Purpose

This paper aims to present a sliding mode control method based on disturbance observer (DO) for improving the reaching law of permanent magnet synchronous motor (PMSM).

Design/methodology/approach

Aiming at the insufficiency of the traditional exponential reaching law used in sliding mode variable structure control, an exponential reaching law related to the speed error is proposed. The improved exponential reaching law can adaptively adjust the size of the constant velocity term in the reaching law according to the size of the speed error, so as to adaptively adjust the speed of the system approaching the sliding mode surface to overcome the control deviation and improve the dynamic and steady state performance. To improve the anti-interference ability of the system, a DO is proposed to observe the external disturbance of the system, and the observed value is used to compensate the system. The stability of the system is analyzed by Lyapunov theorem. The effectiveness of this method is proved by simulation and experiment.

Findings

Simulation and experiment show that the proposed method has the advantages of fast response and strong anti-interference ability.

Research limitations/implications

The proposed method cannot observe the disturbance caused by the change of internal parameters of the system.

Originality/value

A sliding mode control method for PMSM is proposed, which has good control performance. The proposed method can effectively suppress chattering, ensure fast response speed and have strong anti-interference ability. The effectiveness of the algorithm is verified by simulation and experiment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 July 2023

Shashi Prakash Dwivedi

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of…

Abstract

Purpose

The quantum of metal particle waste generation in manufacturing industries is posing a great concern for the environment. The iron forging industries generate a huge amount of grinding sludge (GS) waste, which is disposed into the earth. The accumulation of this waste in dump yards causes an increase in soil and air pollution levels.

Design/methodology/approach

In the current investigation, an effort was made to use this waste GS for the progress of aluminum-based composite. To maintain uniform distribution of reinforcing material, the friction stir processing technique was used.

Findings

The characterization based on the SEM image of the Al/GS composite revealed that uniform dispersal of reinforcement content can be attained in a single tool pass. Number of grains/inch was approximately 2,402. XRD of GS powder confirmed the presence of SiO2, Fe2O3, Al2O3 and CaO phases. These phases proved GS to be a better reinforcement with aluminum alloy. Tensile strength and hardness were significantly improved in comparison to the aluminum alloy. Thermal expansion and corrosion weight loss were evaluated to observe the influence of GS addition.

Originality/value

The studies proved that the use of GS as reinforcement material can help in curbing the menace of soil pollution to a large extent.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 October 2023

Fugang Zhai, Shengnan Li and Yangtao Xing

This paper aims to study the motion trajectory of the oil seal for shaft in eccentric state and derive equation of lip motion trajectory.

Abstract

Purpose

This paper aims to study the motion trajectory of the oil seal for shaft in eccentric state and derive equation of lip motion trajectory.

Design/methodology/approach

This paper analyzes the force during the motion of the eccentric lip by considering the material viscoelasticity, and a cam-plate mechanism is established as an equivalent model for the motion between the shaft and the lip; according to this, the equation of lip motion trajectory is derived.

Findings

The trajectory of the lip lags that of the shaft in the eccentric state because the viscoelasticity-affected lip recovery velocity is lower than the shaft recovery speed. The lip trajectory enters the lag phase earlier and the lag phase’s duration is longer with the increase of the eccentricity and rotational speed, because the deviation of the recovery velocities between the lip and the shaft will be exacerbated.

Originality/value

Innovatively, by considering the viscoelasticity of the material, the cam-plate mechanism is used to equivalent the motion of the shaft-lip to derive the equation for the radial motion trajectory of the eccentric lip. The regularity of lip motion is the key to determining the performance of oil seals, and the eccentric lip trajectory research method revealed in this paper provides a research basis for the performance research and optimization of eccentric oil seals.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2023-0161/

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 269