Search results

1 – 10 of 164
Article
Publication date: 5 November 2021

Benedikt Schauerte, Martin Marco Nell, Tim Brimmers, Nora Leuning and Kay Hameyer

The magnetic characterization of electrical steel is typically examined by measurements under the condition of unidirectional sinusoidal flux density at different magnetization

Abstract

Purpose

The magnetic characterization of electrical steel is typically examined by measurements under the condition of unidirectional sinusoidal flux density at different magnetization frequencies. A variety of iron loss models were developed and parametrized for these standardized unidirectional iron loss measurements. In the magnetic cross section of rotating electrical machines, the spatial magnetic flux density loci and with them the resulting iron losses vary significantly from these unidirectional cases. For a better recreation of the measured behavior extended iron loss models that consider the effects of rotational magnetization have to be developed and compared to the measured material behavior. The aim of this study is the adaptation, parametrization and validation of an iron loss model considering the spatial flux density loci is presented and validated with measurements of circular and elliptical magnetizations.

Design/methodology/approach

The proposed iron loss model allows the calculation and separation of the different iron loss components based on the measured iron loss for different spatial magnetization loci. The separation is performed in analogy to the conventional iron loss calculation approach designed for the recreation of the iron losses measured under unidirectional, one-dimensional measurements. The phenomenological behavior for rotating magnetization loci is considered by the formulation of the different iron loss components as a function of the maximum magnetic flux density Bm, axis ratio fAx, angle to the rolling direction (RD) θ and magnetization frequency f.

Findings

The proposed formulation for the calculation of rotating iron loss is able to recreate the complicated interdependencies between the different iron loss components and the respective spatial magnetic flux loci. The model can be easily implemented in the finite element analysis of rotating electrical machines, leading to good agreement between the theoretically expected behavior and the actual output of the iron loss calculation at different geometric locations in the magnetic cross section of rotating electrical machines.

Originality/value

Based on conventional one-dimensional iron loss separation approaches and previously performed extensions for rotational magnetization, the terms for the consideration of vectorial unidirectional, elliptical and circular flux density loci are adjusted and compared to the performed rotational measurement. The presented approach for the mathematical formulation of the iron loss model also allows the parametrization of the different iron loss components by unidirectional measurements performed in different directions to the RD on conventional one-dimensional measurement topologies such as the Epstein frames and single sheet testers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2007

Jan Anuszczyk, Zbigniew Gmyrek and Grzegorz Zwoliński

The calculation of the power loss in the core of the electrical machines is a special problem. In some areas of the electrical machine core the magnetic fields are neither…

Abstract

Purpose

The calculation of the power loss in the core of the electrical machines is a special problem. In some areas of the electrical machine core the magnetic fields are neither unidirectional nor sinusoidal. This paper seeks to discuss the rotational power loss calculation methodology.

Design/methodology/approach

The proposed methodology is based on the calculation of the field quantities Bx and By. In this methodology the rotational power losses are calculated employing the empirical approach directly from these quantities. Moreover, the computational model is the most important element of the proposed methodology because it utilises the FEM to the calculations of the hodographs of the flux density vector in each mesh element.

Findings

The paper formulates the dependence of the rotational power losses from the B vector hodograph shape.

Research limitations/implications

Experimental verification will still be needed as to the accuracy of the model and the applicability to the various magnetic materials.

Practical implications

The paper provides an easy mathematical method to the iron loss calculation, under the rotational magnetisation, the excess loss included.

Originality/value

The analytical model, as presented here, is applicable to the iron loss calculation under the rotational magnetisation in devices that have complicated geometrical shapes.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1131

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Witold Mazgaj and Adam Warzecha

The purpose of this paper is to present the differences in results of numerical calculations arising from different simplifications of the rotational magnetization model in…

Abstract

Purpose

The purpose of this paper is to present the differences in results of numerical calculations arising from different simplifications of the rotational magnetization model in typical dynamo sheets.

Design/methodology/approach

A comprehensive model of rotational magnetization processes in typical dynamo sheets should take into consideration the magnetic hysteresis and eddy current phenomena and also certain anisotropic properties. The chosen model of the rotational magnetization is briefly presented in this paper. A method of the inclusion of the rotational magnetization model into equations of the magnetic field distribution is described. The correctness of these equations has been verified experimentally. Numerical calculations of the rotational magnetization in two types of dynamo sheets were carried out for several simplifications of the described model.

Findings

Results of numerical calculations of the rotational magnetization with the omission of the hysteresis phenomenon or with the omission of eddy currents were compared with results obtained with the use of the comprehensive model of the rotational magnetization.

Practical implications

The paper presents comments and recommendations concerning the omission of both the hysteresis phenomenon and eddy currents in the analysis of the rotational magnetization in dynamo sheets and the impact of these simplifications on numerical calculation results.

Originality/value

The content of the paper refers to very important issues of modeling and calculations of the rotational magnetization in typical dynamo steel sheets.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2022

Martin Marco Nell, Benedikt Schauerte, Tim Brimmers and Kay Hameyer

Various iron loss models can be used for the simulation of electrical machines. In particular, the effect of rotating magnetic flux density at certain geometric locations in a…

Abstract

Purpose

Various iron loss models can be used for the simulation of electrical machines. In particular, the effect of rotating magnetic flux density at certain geometric locations in a machine is often neglected by conventional iron loss models. The purpose of this paper is to compare the adapted IEM loss model for rotational magnetization that is developed within the context of this work with other existing models in the framework of a finite element simulation of an exemplary induction machine.

Design/methodology/approach

In this paper, an adapted IEM loss model for rotational magnetization, developed within the context of the paper, is implemented in a finite element method simulation and used to calculate the iron losses of an exemplary induction machine. The resulting iron losses are compared with the iron losses simulated using three other already existing iron loss models that do not consider the effects of rotational flux densities. The used iron loss models are the modified Bertotti model, the IEM-5 parameter model and a dynamic core loss model. For the analysis, different operating points and different locations within the machine are examined, leading to the analysis of different shapes and amplitudes of the flux density curves.

Findings

The modified Bertotti model, the IEM-5 parameter model and the dynamic core loss model underestimate the hysteresis and excess losses in locations of rotational magnetizations and low-flux densities, while they overestimate the losses for rotational magnetization and high-flux densities. The error is reduced by the adapted IEM loss model for rotational magnetization. Furthermore, it is shown that the dynamic core loss model results in significant higher hysteresis losses for magnetizations with a high amount of harmonics.

Originality/value

The simulation results show that the adapted IEM loss model for rotational magnetization provides very similar results to existing iron loss models in the case of unidirectional magnetization. Furthermore, it is able to reproduce the effects of rotational flux densities on iron losses within a machine simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2011

Witold Mazgaj

The aim of this paper is to present a new relatively simple model of the rotational magnetization process in anisotropic sheets.

Abstract

Purpose

The aim of this paper is to present a new relatively simple model of the rotational magnetization process in anisotropic sheets.

Design/methodology/approach

The surface of a sample of an anisotropic sheet is divided into an assumed number of specified directions. To each direction a certain hysteresis loop, the so‐called direction hysteresis, is assigned. The parameters of the proposed model are calculated on the basis of such values as the saturation flux density, the residual flux density (remanence), and the coercive force. It is also necessary to take into account the anisotropy constant and also the distribution function of the grains in the sample of the given anisotropic material.

Findings

The model of the rotational magnetization process of soft ferromagnetic materials takes into account two fundamental phenomena: the irreversible domain wall movements and the rotations of the flux density vectors from the easy magnetization axes. This model can also be used for the modelling of the axial magnetization process.

Practical implications

The proposed model can be used in numerical calculations of the rotational magnetization in magnetic circuits of electrical machines for any work conditions. However, for the comprehensive calculation of the magnetic field distribution this model should be completed with eddy current equations. Eddy currents influence magnetic field distribution in electric steel sheets.

Originality/value

A new model of the rotational magnetization process in anisotropic sheets is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 December 2018

Wenju Yan, Hao Chen, Tong Xu and Kai Wang

An improved simulation model of switched reluctance motor (SRM) for steady-state operation that considers the core losses in the stator and rotor is established to obtain the…

Abstract

Purpose

An improved simulation model of switched reluctance motor (SRM) for steady-state operation that considers the core losses in the stator and rotor is established to obtain the steady performance of the high-speed SRM during the design, analysis and control of SRM driving system more accurately.

Design/methodology/approach

The transient core loss model for the material and SRM is presented. Then a new method for calculating the flux density of the motor in real time is introduced, and a steady-state simulation model of the SRM including real-time transient core losses calculation model is established according to the transient flux density. Because the transient core losses calculated by above method are the total core losses of the motor, a core losses distribution method is proposed and the steady-state simulation model of the SRM including the distributed core losses’ effect on the phase winding is established.

Findings

The comparison results show that the proposed model has higher accuracy than the traditional model, excluding core losses, especially at the moments when phase voltage is turn-on and turn-off. The proportion of the core losses to the motor losses increases with the increase in speed. So, the core losses’ effect on the steady-state performance of the high-speed SRM cannot be ignored.

Originality/value

The method to obtain flux density in the real time is presented and the improved steady-state simulation model of SRM that considering transient core losses is proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Wenju Yan, Hao Chen, Lei Chen and Kai Wang

This paper aims to establish a modified variable coefficient calculation model to analyse the control parameter effect on the iron loss of switched reluctance motor under pulse…

Abstract

Purpose

This paper aims to establish a modified variable coefficient calculation model to analyse the control parameter effect on the iron loss of switched reluctance motor under pulse width modulation (PWM) mode.

Design/methodology/approach

The finite element model is solved to get the flux density by python language. Due to non-sinusoidal flux density feature and the effect of PWM excitation, the Fourier transform is applied in consideration of harmonic components. To improve the accuracy of iron loss computation, the effect of minor loops is considered by using the rain-flow counting method.

Findings

When the speed fluctuates around the set speed and the fluctuations are relatively small, it is useful to reduce the iron loss with smaller duty ratio and turn-on angle or greater duty ratio and smaller turn-off angle. The iron loss is less affected by chopping frequency, while the iron loss increases obviously with higher conduction angles. The iron loss under non-energy-returnable-voltage-chop mode is greater than energy-returnable-voltage-chop mode.

Originality/value

The modified variable coefficient MIEM5 iron loss model is proposed to improve the accuracy of iron loss calculation. Then the control parameters such as duty ratio, chopping frequency, turn on angle and turn off angle are analysed under PWM mode.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Andreas Ruf, Simon Steentjes, David Franck and Kay Hameyer

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the…

Abstract

Purpose

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the performance of the electrical machine. The applied approach is based on measured material characteristics for various frequencies and magnetic flux densities. These are varied during the simulation according to the operational conditions of the rotating electrical machine. Therewith, the fault being committed neglecting the frequency-dependent magnetization behaviour of the magnetic material is examined in detail.

Design/methodology/approach

The influence of non-linear frequency-dependent material properties is studied by variation of the frequency-dependent magnetization characteristics. Two different non-oriented electrical steel grades having the same nominal losses at 1.5 T and 50 Hz, but different thickness, classified as M330-35A and M330-50A are studied in detail. Both have slightly different magnetization and loss behaviour.

Findings

This analysis corroborates that it is important to consider the frequency-dependency and saturation behaviour of the ferromagnetic material as well as its magnetic utilization when simulating electrical machines, i.e., its performance. The necessity to change the magnetization curve according to the applied frequency for the calculation of operating points depends on the applied material and the frequency range. Using materials, whose magnetization behaviour is marginally affected by frequency, causes a deviation in the flux-linkage and the electromagnetic torque in a small frequency range. However, analysing larger frequency ranges, the frequency behaviour of the material cannot be neglected. For instance, a poorer magnetizability requires a higher quadrature current to keep the same torque leading to increased copper losses. In addition, the applied iron-loss model plays a central role, since changes in magnetization behaviour with frequency lead to changes in the iron losses. In order to study the impact, the iron-loss model has to be capable to incorporate the harmonic content, because particularly the field harmonics are influenced by the shape of the magnetization curve.

Originality/value

This paper gives a close insight on the way the frequency-dependent non-linear magnetization behaviour affects the energy loss and the performance of electrical machines. Therewith measures to tackle this could be derived.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 April 2022

Xiao Xiao, Fabian Müller, Martin Marco Nell and Kay Hameyer

The ordinary vector hysteresis stop model with constant threshold values is not able to prohibit the hysteretic property after the saturation correctly. This paper aims to develop…

Abstract

Purpose

The ordinary vector hysteresis stop model with constant threshold values is not able to prohibit the hysteretic property after the saturation correctly. This paper aims to develop an improved vector hysteresis stop model with threshold surfaces. This advanced anisotropic vector hysteresis stop model can represent the magnetic saturation properties and the hysteresis losses under alternating and rotating magnetizations.

Design/methodology/approach

By integrating anhysteretic surfaces into the elastic element of a vector hysteresis stop model, the anisotropy of the permeability of an electrical steel sheet can be represented. Instead of the commonly used constant threshold value for plastic elements of the hysteresis model, threshold surfaces are applied to the stop hysterons. The threshold surfaces can be derived directly from measured alternating major loops of the material sample. By saturated polarization, the constructed threshold surfaces are vanishing. In this way, the reversible magnetic flux density is in the same direction of the applied magnetic flux density. Thus, the saturation properties are satisfied.

Findings

Analyzing the measurements of the electrical steel sheets sample obtained from a rotational single sheet tester shows that the clockwise (CW) and counter-CW (CCW) rotational hysteresis losses decrease by saturated flux density. At this state, instead of the domain wall motion, the magnetization rotation is dominant in the material. As a result, the hysteresis losses, which are related to the domain wall motion, are vanished near the saturation. In one stop operator, the plastic element represents the hysteresis part of the model. Integrating threshold surface into the plastic element, the hysteresis part can be modified to zero near the saturation to represent the saturation properties.

Originality/value

The results of this work demonstrate that the presented vector hysteresis stop model allows simulation of anisotropic hysteresis effects, alternating and rotating hysteresis losses. The parameters of the hysteresis model are determined by comparing the measured and modeled minor loops in different alternating magnetization directions. With the identified parameters, the proposed model is excited with rotated excitations in CW and CCW directions. The rotated hysteresis losses, derived from the model, are then compared with those experimentally measured. The modified vector stop model can significantly improve the accuracy of representing hysteresis saturations and losses.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 164