Search results

1 – 10 of 847
Article
Publication date: 5 May 2015

Witold Mazgaj and Adam Warzecha

The purpose of this paper is to present the differences in results of numerical calculations arising from different simplifications of the rotational magnetization model in…

Abstract

Purpose

The purpose of this paper is to present the differences in results of numerical calculations arising from different simplifications of the rotational magnetization model in typical dynamo sheets.

Design/methodology/approach

A comprehensive model of rotational magnetization processes in typical dynamo sheets should take into consideration the magnetic hysteresis and eddy current phenomena and also certain anisotropic properties. The chosen model of the rotational magnetization is briefly presented in this paper. A method of the inclusion of the rotational magnetization model into equations of the magnetic field distribution is described. The correctness of these equations has been verified experimentally. Numerical calculations of the rotational magnetization in two types of dynamo sheets were carried out for several simplifications of the described model.

Findings

Results of numerical calculations of the rotational magnetization with the omission of the hysteresis phenomenon or with the omission of eddy currents were compared with results obtained with the use of the comprehensive model of the rotational magnetization.

Practical implications

The paper presents comments and recommendations concerning the omission of both the hysteresis phenomenon and eddy currents in the analysis of the rotational magnetization in dynamo sheets and the impact of these simplifications on numerical calculation results.

Originality/value

The content of the paper refers to very important issues of modeling and calculations of the rotational magnetization in typical dynamo steel sheets.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 November 2017

Jingsong Li, Lixiang Wang, Qingxin Yang, Shanming Wang, Yongjian Li, Changgeng Zhang and Baojun Qu

Due to existence of skin effect under rotational excitation, especially to high-frequency motors and power transformers run at the frequency of hundreds or even thousands of…

Abstract

Purpose

Due to existence of skin effect under rotational excitation, especially to high-frequency motors and power transformers run at the frequency of hundreds or even thousands of hertz, core losses will increase significantly, which may cause local overheating damage, and the efficiency and longevity will be decreased. The purpose of this paper is to accurately calculate the rotational anomalous loss in electrical steel sheets.

Design/methodology/approach

The influence of skin effect to rotational anomalous loss coefficient is described in detail. Based on the rotational core losses calculation approach, the transformed coefficient and parameters of rotational anomalous loss are determined in accordance with experimental data obtained by using 3D magnetic properties testing system. Then, a variable loss coefficient calculation model of rotational anomalous loss is built. Meanwhile, a separation of the total 2D elliptical rotation experimental core losses is worked out.

Findings

The two methods are analysed and compared qualitatively. It should be noted that the novel calculation model can be more effectively presented anomalous loss features. Moreover, quantitative comparisons between 2D elliptical rotation and alternating core losses have achieved beneficial conclusions.

Originality/value

Transformed rotational anomalous loss coefficient and parameters of electrical steel sheets considering skin effect are determined. Based on that, a novel calculation model evaluating 2D elliptical rotation anomalous loss is presented and verified based on the experimental measurement and the separation of the total 2D elliptical rotation core losses. The 2D elliptical rotation core losses separation method and quantitative comparison with alternating excitation are helpful to engineering application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 May 2022

Cheng Zhang, Jianfeng Zhou and Xiannian Meng

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads…

Abstract

Purpose

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads to seal failure and MRF deterioration. The purpose of this study is to investigate the mechanism of temperature rise of MRF film under the action of the three-field coupling of the flow field, temperature field and magnetic field.

Design/methodology/approach

The fluid film was simplified as a Couette flow in this work to simulate the temperature change in the sealing fluid film under different working conditions. The corresponding experiment for test the temperature rise was also carried out, and the temperature of the characteristic point of the stationary ring was measured to validate the model.

Findings

The results show that the temperature rise is mainly affected by the rotational speed, magnetic field strength and fluid film thickness. The magnetic field enhances the convective heat transfer in the MRF film. The thinner the fluid film, the more frictional heat generated. The MRF film reaches its maximum temperature at the contact with the end face of rotating ring due to frictional heat.

Originality/value

A method for temperature rise analysis of MRF fluid sealing films based on Couette flow is established. It is helpful for the study of liquid film frictional heat in MRF seals.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 September 1999

Carlo Ragusa and Maurizio Repetto

The implementation of a vector Preisach model for the modelling of anisotropic hysteretic soft magnetic materials is outlined. Some comparisons with measurements on alternate and…

Abstract

The implementation of a vector Preisach model for the modelling of anisotropic hysteretic soft magnetic materials is outlined. Some comparisons with measurements on alternate and rotational magnetic field excitations are shown. The hysteresis model is inserted inside a two‐dimensional finite element solver formulated in terms of magnetic vector potential and nonlinear solution is handled by means of the fixed point method with H‐scheme. Results obtained on a two‐dimensional geometry are described and discussed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Brijesh Upadhaya, Floran Martin, Paavo Rasilo, Paul Handgruber, Anouar Belahcen and Antero Arkkio

Non-oriented electrical steel presents anisotropic behaviour. Modelling such anisotropic behaviour has become a necessity for accurate design of electrical machines. The main aim…

393

Abstract

Purpose

Non-oriented electrical steel presents anisotropic behaviour. Modelling such anisotropic behaviour has become a necessity for accurate design of electrical machines. The main aim of this study is to model the magnetic anisotropy in the non-oriented electrical steel sheet of grade M400-50A using a phenomenological hysteresis model.

Design/methodology/approach

The well-known phenomenological vector Jiles–Atherton hysteresis model is modified to correctly model the typical anisotropic behaviour of the non-oriented electrical steel sheet, which is not described correctly by the original vector Jiles–Atherton model. The modification to the vector model is implemented through the anhysteretic magnetization. Instead of the commonly used classical Langevin function, the authors introduced 2D bi-cubic spline to represent the anhysteretic magnetization for modelling the magnetic anisotropy.

Findings

The proposed model is found to yield good agreement with the measurement data. Comparisons are done between the original vector model and the proposed model. Another comparison is also made between the results obtained considering two different modifications to the anhysteretic magnetization.

Originality/value

The paper presents an original method to model the anhysteretic magnetization based on projections of the anhysteretic magnetization in the principal axis, and apply such modification to the vector Jiles–Atherton model to account for the magnetic anisotropy. The replacement of the classical Langevin function with the spline resulted in better fitting. The proposed model could be used in the numerical analysis of magnetic field in an electrical application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Yawei Wang, Hao Gao, Zhuyong Li, Yang Ping, Zhijian Jin and Zhiyong Hong

– The purpose of this paper is to analyse and improve the temperature uniformity of aluminium billets heated by superconducting DC induction heaters.

Abstract

Purpose

The purpose of this paper is to analyse and improve the temperature uniformity of aluminium billets heated by superconducting DC induction heaters.

Design/methodology/approach

A 3D electromagnetic model coupled with a heat transfer model is developed to calculate the heating process of the billets which are rotated in uniform transverse DC magnetic field. A laboratory-scale DC induction heater prototype has been built to validate the model. The results from simulation and measurement have a good agreement. The model is used to investigate the factors affecting the temperature uniformity of aluminium billets.

Findings

The results from simulation show that lower rotation speeds always mean better temperature uniformity along the radial direction, due to the increase in power penetration. However, the situation is very different for the temperature distribution along the axial direction. When the rotation speed is low, the temperature at the ends is lower than other parts. The situation reverses as the rotation speeds increase. This phenomenon is referred to as the “ending effect” in this paper.

Research limitations/implications

Because of the ending effect, a lower rotation speed does not always result in better overall temperature uniformity, especially for billets of smaller sizes.

Practical implications

There is an optimal rotation speed that yields the best overall temperature uniformity. Lower rotation speeds are not always preferred. The results and numerical model developed are very useful in the design of a superconducting DC induction heater.

Originality/value

The temperature uniformity of aluminium billets heated by DC induction heaters is investigated and optimized.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Yonghong Xia, Junbo Liu, Bo Xu and Hongjian Wu

The purpose of this paper is to propose a novel hybrid excitation permanent magnet synchronous generator (HEPMSG) utilizing tooth harmonic for excitation, the structural features…

Abstract

Purpose

The purpose of this paper is to propose a novel hybrid excitation permanent magnet synchronous generator (HEPMSG) utilizing tooth harmonic for excitation, the structural features and operation principle of which are also described.

Design/methodology/approach

To obtain the operation performance quickly, this paper derives the mathematical model of the machine system represented by circuit, and analyzes the operation mode of rectifier circuit in the tooth harmonic excitation system, then the standard state equations for each operation mode are obtained. Combining the inductance parameter of this machine with the load resistance and inductance, the armature current waveform, the field current waveform and tooth harmonic winding current waveform are obtained by using the numerical method to solve the standard state equation.

Findings

Comparing with the experimental results, the availability of the principle and the validity of the model of the machine system are verified.

Practical implications

This HEPMSG is a new brushless self-excited and self-regulated generator, which is suitable for an independent power source.

Originality/value

Unlike the existing hybrid excitation permanent magnet machine, this HEPMSG utilized the inherent tooth harmonic EMF of the rotor to adjust the air-gap magnetic field of the permanent magnet machine.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 July 2019

Jasmin Smajic

The paper presents a new variant of the H-Φ field formulation for solving 3-D magnetostatic and frequency domain eddy current problems. The suggested formulation uses the vector…

Abstract

Purpose

The paper presents a new variant of the H-Φ field formulation for solving 3-D magnetostatic and frequency domain eddy current problems. The suggested formulation uses the vector and scalar tetrahedral elements within conducting and non-conducting domains, respectively. The presented numerical method is capable of solving multiply connected regions and eliminates the need for computing the source current density and the source magnetic field before the actual magnetostatic and eddy current simulations. The obtained magnetostatic results are verified by comparison against the corresponding results of the standard stationary current distribution analysis combined with the Biot-Savart integration. The accuracy of the eddy current results is demonstrated by comparison against the classical A-A-f approach in frequency domain.

Design/methodology/approach

The theory and implementation of the new H-Φ magnetostatic and eddy current solver is presented in detail. The method delivers reliable results without the need to compute the source current density and source magnetic field before the actual simulation.

Findings

The proposed H-Φ produce radically smaller and considerably better conditioned equation systems than the alternative A-A approach, which usually requires the unphysical regularization in terms of a low electric conductivity value within the nonconductive domain.

Originality/value

The presented numerical method is capable of solving multiply connected regions and eliminates the need for computing the source current density and the source magnetic field before the actual magnetostatic and eddy current simulations.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 May 2009

Damijan Miljavec, Mykhaylo Zagirnyak and Bogomir Zidarič

The purpose of this paper is to derive the geometry‐based equations for inductances which are used in circuit theory analysis of synchronous reluctance motor (SRM). Transient and…

Abstract

Purpose

The purpose of this paper is to derive the geometry‐based equations for inductances which are used in circuit theory analysis of synchronous reluctance motor (SRM). Transient and steady state performance analyze of SRM by using the 2D time‐stepping finite‐element method (FEM).

Design/methodology/approach

The analytical approach is used to obtain the equations which describe geometry dependent magnetizing inductances of SRM. Transient and steady state performance of the SRM is analyzed by using the 2D time‐stepping FEM. The external electric circuit connected with the finite‐element model of the SRM geometry allows the study of almost any of the electric and magnetic properties of the machine. Presented SRM model is also connected to the external mechanical loads (friction, rotor inertia and load torque). The use of different materials for the magnetic‐pole part of the rotor and for flux barriers was analyzed. The flux barriers in the first SRM rotor were filled with a pure massive electrically conductive ferromagnetic with a proper B‐H curve, whereas the rotor magnetic segments were made of non‐conductive electric steel described with its B‐H curve. The conductive barriers with their end rings form a squirrel cage and allow SRM to start on‐line. The flux barriers of the second SRM rotor were made of aluminum but between the second and third flux barrier a massive electrically‐conductive ferromagnetic was inserted which during starting‐up acted as a part of the squirrel cage. All of the flux barriers of the third SRM rotor were made of electrically‐conductive aluminum with iron parts axially laminated. The finite‐element SRM models coupled with an electric circuit is also used to evaluate the motor performance at various asynchronous speeds.

Findings

Analytical geometry‐dependant equations for the d‐ and q‐axis SRM inductances are derived. On the basis of the proposed 2D time‐stepping finite‐element analysis, the start‐up performance for the SRM rotor design using different materials is established. The torque distribution as a function of time at any of the observed asynchronous speeds is not smooth and uniform. It consists of the stator‐to‐rotor tooth pulsating torque, and the synchronous and asynchronous component.

Research limitations/implications

The main disadvantage of analytical geometry‐dependant equations for the d‐ and q‐axis SRM inductances is the linearization of any of the ferromagnetic parts.

Practical implications

On the basis of the proposed 2D time‐stepping finite‐element analysis, the start‐up performance, asynchronous run and synchronous torque characteristics for the SRM rotor design using different materials are established.

Originality/value

The value of the paper is the closed view about happenings in rotor flux barriers of SRM, mostly regarding the time distribution of induced currents in the rotor flux barriers. On the base of 2D time‐stepping FEM, the use of different materials for the magnetic‐pole part of the rotor and for flux barriers was analyzed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 847