Search results

1 – 10 of 68
Article
Publication date: 22 August 2023

Mohammadsadegh Pahlavanzadeh, Krzysztof Rusin and Wlodzimierz Wróblewski

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of…

Abstract

Purpose

The purpose of this study is an assessment of the existing roughness models to simulate the flow in the narrow gap between corotating and rough disks. A specific configuration of the flow through the gap, which forms a minichannel with variable cross sections and rotating walls, makes it a complex problem and, therefore, worth discussing in more detail.

Design/methodology/approach

Two roughness models were examined, the first one was based on the wall function modification by application of the shift in the dimensionless velocity profile, and the second one was based on the correction of turbulence parameters at the wall, proposed by Aupoix. Due to the lack of data to validate that specific case, the approach to deal with was selected after a systematic study of reported test cases. It started with a zero-pressure-gradient boundary layer in the flow over a flat plate, continued with flow through minichannels with stationary walls, and finally, focused on the flow between corotating discs, pertaining each time to smooth and rough surfaces.

Findings

The limitations of the roughness models were highlighted, which make the models not reliable in the application to minichannel flows. It concerns turbulence models, near-wall discretization and roughness approaches. Aupoix’s method to account for roughness was selected, and the influence of minichannel height, mass flow rate, fluid properties and roughness height on the velocity profile between corotating discs in both smooth and rough cases was discussed.

Originality/value

The originality of this study is the evaluation and validation of different methods to account for the roughness in rotating mini channels, where the protrusions can cover a substantial part of the channel. Flow behavior and performance of different turbulence models were analyzed as well.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 January 2024

Inamul Hasan, Mukesh R., Radha Krishnan P., Srinath R. and Boomadevi P.

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental…

Abstract

Purpose

This study aims to find the characteristics of supercritical airfoil in helicopter rotor blades for hovering phase using numerical analysis and the validation using experimental results.

Design/methodology/approach

Using numerical analysis in the forward phase of the helicopter, supercritical airfoil is compared with the conventional airfoil for the aerodynamic performance. The multiple reference frame method is used to produce the results for rotational analysis. A grid independence test was carried out, and validation was obtained using benchmark values from NASA data.

Findings

From the analysis results, a supercritical airfoil in hovering flight analysis proved that the NASA SC rotor produces 25% at 5°, 26% at 12° and 32% better thrust at 8° of collective pitch than the HH02 rotor. Helicopter performance parameters are also calculated based on momentum theory. Theoretical calculations prove that the NASA SC rotor is better than the HH02 rotor. The results of helicopter performance prove that the NASA SC rotor provides better aerodynamic efficiency than the HH02 rotor.

Originality/value

The novelty of the paper is it proved the aerodynamic performance of supercritical airfoil is performing better than the HH02 airfoil. The results are validated with the experimental values and theoretical calculations from the momentum theory.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 June 2023

Liu Fuyu, Yu Bo, Li Yongfan, Ren Baojie, Hao Muming, Li Zhentao and Li Xiaozu

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Abstract

Purpose

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Design/methodology/approach

The steady-state and perturbation Reynolds control equations of liquid films were established. The film pressure and the liquid film dynamic coefficients were obtained, impacts of groove structures on the liquid film dynamic characteristic coefficients were analyzed.

Findings

The analysis results indicate that the axial dynamic stiffness and damping coefficients of the liquid film seal with inclined elliptical grooves are far greater than those of the angular directions. Furthermore, the dynamic stiffness coefficient of the liquid film with the nonclosed inclined elliptical grooves is higher than those with the closed grooves, whereas the dynamic damping coefficient of the liquid film is lower.

Originality/value

The effects of inclined elliptical groove structures on the dynamic characteristics of the liquid film seal are investigated. The results presented are expected to enrich the theoretical basis of optimizing the dynamic performance of liquid film seals with textures.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2023

Weifeng Liu, Xiaodong Yang, Xianli Liu, Jian Zhang, Feilin Liu, Shengguo Yang and Lin Zeng

The purpose of this paper is to analyze the variation of temperature field, pressure field and deformation of hydrostatic thrust bearing under different working conditions, so as…

Abstract

Purpose

The purpose of this paper is to analyze the variation of temperature field, pressure field and deformation of hydrostatic thrust bearing under different working conditions, so as to provide a theoretical basis for improving accuracy and reliability.

Design/methodology/approach

In this study, the double rectangular hydrostatic bearing of type Q1-224 was selected as the research object, and the simulation was carried out according to different working conditions, and the obtained data were summarized regularly.

Findings

It is found that the overall temperature of hydrostatic bearing increases with the increase of speed and load, and the increase in load will result in a larger pressure distribution which first increases and then decreases with the speed. The deformation trend of the deformation field is found, and it is found that the force deformation is larger than the thermal deformation at low rotational speed, and the thermal deformation is larger than the force deformation at high rotational speed.

Originality/value

In this study, the fluid-structure coupling method of conjugate heat transfer is applied to study the whole hydrostatic bearing. Most of the previous studies only studied the oil film and considered the influence of the convective heat transfer between the hydrostatic bearing and the air in heat transfer, which is rarely seen in the previous research literature.

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2023

Zeyang Zhou and Jun Huang

This study aims to study the radar cross-section (RCS) of an intermeshing rotor with blade pitch.

Abstract

Purpose

This study aims to study the radar cross-section (RCS) of an intermeshing rotor with blade pitch.

Design/methodology/approach

The variation of rotor blade pitch is designed into three modes: fixed mode, linear mode and smooth mode. The dynamic process of two crossed rotors is simulated, where the instantaneous RCS is calculated by physical optics and physical theory of diffraction.

Findings

Increasing the pitch angle in the fixed mode can reduce the average RCS of rotor at the given head azimuth. The RCS curve of helicopter in linear mode and smooth mode will have a large peak in the side direction at the given moment. Although the blade pitch in smooth mode is generally larger than that in fixed mode, the smooth mode is conducive to reducing the peak and mean value of helicopter RCS at the given heading azimuth.

Originality/value

The calculation method for analyzing RCS of intermeshing rotor with variable blade pitch is established.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 August 2023

Samir Ouchene, Arezki Smaili and Hachimi Fellouah

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid…

Abstract

Purpose

This paper aims to investigate the problem of estimating the angle of attack (AoA) and relative velocity for vertical axis wind turbine (VAWT) blades from computational fluid dynamics data.

Design/methodology/approach

Two methods are implemented as function objects within the OpenFOAM framework for estimating the blade’s AoA and relative velocity. For the numerical analysis of the flow around and through the VAWT, 2 D unsteady Reynolds-averaged Navier–Stokes (URANS) simulations are carried out and validated against experimental data.

Findings

To gain a better understanding of the complex flow features encountered by VAWT blades, the determination of the AoA is crucial. Relying on the geometrically-derived AoA may lead to wrong conclusions about blade aerodynamics.

Practical implications

This study can lead to the development of more robust optimization techniques for enhancing the variable-pitch control mechanism of VAWT blades and improving low-order models based on the blade element momentum theory.

Originality/value

Assessment of the reliability of AoA and relative velocity estimation methods for VAWT’ blades at low-Reynolds numbers using URANS turbulence models in the context of dynamic stall and blade–vortex interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 December 2023

Yazhou Mao, Daqing Li, Lilin Li and Jingyang Zheng

This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing…

Abstract

Purpose

This study aims to improve the tribological properties of hydrodynamic journal bearing via surface texture, as well as the wear and antifriction mechanisms of textured bearing were represented. It provides a design direction for solving the tribological problem of rotor-bearing system.

Design/methodology/approach

In this paper, the variation of surface texture parameters (e.g. texture diameter, d; area density, sp; and depth, hp) were analyzed based on finite difference method. The optimal surface texture parameters were obtained by designing orthogonal experiments, and the relationship between friction and wear properties and microstructure was studied via combining electron probe microanalyzer, scanning electron microscope, X-ray diffractometer and friction and wear testing machine.

Findings

Dimensionless film pressure P increased as the d increased, whereas P first increased and then decreased as the sp and hp increased, and the maximum P was got as sp = 15% and hp = 25 µm, respectively. The friction coefficient of textured surface with suitable parameters was effectively reduced and the textured surface with the best antifriction effect was 5#. Orthogonal experimental design analysis showed that the influence order of factors on friction coefficient was as follows: sp > sp × d > d > d × hp > hp > sp × hp and the friction coefficient first decreased and then increased as the sp, d and hp increased. In addition, the friction and wear mechanism of textured bearing were three body friction and abrasive wear as the matrix structure and hard phase were a single β phase and Mn5Si3, respectively. While the antifriction mechanism of textured surface was able to store abrasive particles and secondary hydrodynamic lubrication was formed.

Originality/value

The sample with reasonable texture parameter design can effectively reduce friction and wear of hydrodynamic journal bearing without reducing the service life, which can provide a reference for improving the lubrication performance and mechanical efficiency of rotor-bearing system.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 4 August 2022

Biranchi Narayan Kar, Paulson Samuel, Jatin Kumar Pradhan and Amit Mallick

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a…

Abstract

Purpose

This paper aims to present an improvement to the power quality of the grid by using a colliding body optimization (CBO) based proportional-integral (PI) compensated design for a grid-connected solar photovoltaic-fed brushless DC motor (BLDC)-driven water pumping system with a bidirectional power flow control. The system with bidirectional power flow allows driving the pump at full proportions uninterruptedly irrespective of the weather conditions and feeding a grid when water pumping is not required.

Design/methodology/approach

Here, power quality issue is taken care of by the optimal generation of the duty cycle of the voltage source converter. The duty cycle is optimally generated by optimal selection of the gains of the current controller (i.e. PI), with the CBO technique resulting in a nearly unity power factor as well as lower total harmonic distortion (THD) of input current. In the CBO technique, the gains of the PI controller are considered as agents and collide with each other to obtain the best value. The system is simulated using MATLAB/Simulink and validated in real time with OPAL RT simulator, OP5700.

Findings

It was found that the power quality of grid using the CBO technique has improved much better than the particle swarm optimization and Zeigler–Nichols approach. The bidirectional flow of control of VSC allowed for optimum resource utilization and full capacity of water pumping whatever may be weather conditions.

Originality/value

Improved power quality of grid by optimally generation of the duty cycle for the proposed system. A unit vector tamplate generation technique is used for bidirectional power transfer.

Article
Publication date: 1 February 2022

Thanh-Long Le, Tran Trung Nghia, Hong Duc Thong and Mai Hoang Kim Son

This paper aims to focus on the effect of the operating condition such as the impeller speed on the centrifugal fan performance and flow characteristics. The ability to predict…

Abstract

Purpose

This paper aims to focus on the effect of the operating condition such as the impeller speed on the centrifugal fan performance and flow characteristics. The ability to predict the behavior of the airflow motion in a centrifugal blower is essential for obtaining the topology optimization design.

Design/methodology/approach

A physical model of the air blower consisting of these main parts in a blower system: collector, impeller, outlet flange and volute casing, and the appropriate boundary conditions are set up by ANSYS software. Computation fluid dynamics are performed for the numerical analysis. The calculation of blower performance parameters such as total pressure, efficiency and flow rate is based on the Reynolds averaged Navier–Stokes equations and k-εturbulence flow model.

Findings

The numerical results show that the change in operating conditions has a significant effect on the blower performance, and the pressure maintained inside the blower is higher for a larger impeller rotational speed.

Originality/value

This work is original and has not yet been submitted to elsewhere or published previously.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 3 July 2023

Hakan F. Oztop, Muhammed Gür, Fatih Selimefendigil and Hakan Coşanay

The purpose of this study is to do a numerical analysis of the jet to a body filled with phase change material (PCM). The melting of the PCM filled body was investigated by the…

Abstract

Purpose

The purpose of this study is to do a numerical analysis of the jet to a body filled with phase change material (PCM). The melting of the PCM filled body was investigated by the hot jet flow. Four different values of the Reynolds number were taken, ranging from 5 × 103 = Re = 12.5 103. Water, Al2O3 1%, Al2O3 2% and hybrid nanofluid (HNF; Al2O3–Ag mixture) were used as fluid types and the effects of fluid type on melting were investigated. At 60 °C, the jet stream was impinged on the PCM filled body at different Reynolds numbers.

Design/methodology/approach

Two-dimensional analysis of melting of PCM inserted A block via impinging turbulent slot jet is numerically studied. Governing equations for turbulent flow are solved by using the finite element method via analysis and system fluent R2020.

Findings

The obtained results showed that the best melting occurred when the Reynolds number increased and the HNF was used. However, the impacts of using alumina-water nanofluid were slight. At Re = 12,500, phase completion time was reduced by about 13.77% when HNF was used while this was only 3.93% with water + alumina nanofluid as compared to using only water at Re = 5,000. In future studies, HNF concentrations will change the type of nanoenhanced PCMs. In addition, the geometry and jet parameters of the PCM-filled cube can be changed.

Originality/value

Effects of impinging jet onto PCM filled block and control of melting via impinging hot jet of PCM. Thus, novelty of the work is to control of melting in a block by impinging hot jet and nanoparticles.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 68