Search results

1 – 10 of over 10000
Article
Publication date: 4 July 2018

Zhe Gao, Jun Huang, Xiaofei Yang and Ping An

This paper aims to calibrate the mounted parameters between the LIDAR and the motor in a low-cost 3D LIDAR device. It proposes the model of the aimed 3D LIDAR device and analyzes…

Abstract

Purpose

This paper aims to calibrate the mounted parameters between the LIDAR and the motor in a low-cost 3D LIDAR device. It proposes the model of the aimed 3D LIDAR device and analyzes the influence of all mounted parameters. The study aims to find a way more accurate and simple to calibrate those mounted parameters.

Design/methodology/approach

This method minimizes the coplanarity and area of the plane scanned to estimate the mounted parameters. Within the method, the authors build different cost function for rotation parameters and translation parameters; thus, the parameter estimation problem of 4-degree-of-freedom (DOF) is decoupled into 2-DOF estimation problem, achieving the calibration of these two types of parameters.

Findings

This paper proposes a calibration method for accurately estimating the mounted parameters between a 2D LIDAR and rotating platform, which realizes the estimation of 2-DOF rotation parameters and 2-DOF translation parameters without additional hardware.

Originality/value

Unlike previous plane-based calibration techniques, the main advantage of the proposed method is that the algorithm can estimate the most and more accurate parameters with no more hardware.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 November 2001

Boštjan Brank and Adnan Ibrahimbegovic´

In this work we present interrelations between different finite rotation parametrizations for geometrically exact classical shell models (i.e. models without drilling rotation)…

Abstract

In this work we present interrelations between different finite rotation parametrizations for geometrically exact classical shell models (i.e. models without drilling rotation). In these kind of models the finite rotations are unrestricted in size but constrained in the 3‐d space. In the finite element approximation we use interpolation that restricts the treatment of rotations to the finite element nodes. Mutual relationships between different parametrizations are very clearly established and presented by informative commutative diagrams. The pluses and minuses of different parametrizations are discussed and the finite rotation terms arising in the linearization are given in their explicit forms.

Details

Engineering Computations, vol. 18 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 November 2013

Paras Ram and Vikas Kumar

The aim of the present study is to examine the ferrohydrodynamic laminar boundary layer flow of electrically non-conducting magnetic fluid on a uniformly heated and radially…

Abstract

Purpose

The aim of the present study is to examine the ferrohydrodynamic laminar boundary layer flow of electrically non-conducting magnetic fluid on a uniformly heated and radially stretchable disk with or without rotation in the presence of an externally applied magnetic field.

Design/methodology/approach

Governing equations give rise to highly non-linear coupled partial differential equations which are reduced to a set of ordinary differential equations in dimensionless form by the means of conventional similarity transformation. These equations are further discretized using central finite difference scheme. And, the solution is obtained in MATLAB environment by finding the missing boundary conditions using shooting method.

Findings

The effects of magnetic field dependent viscosity and rotation strength parameter on velocity and temperature profiles are investigated. Besides, the other significant physical quantities such as radial and tangential skin frictions, rate of heat transfer and boundary layer displacement thickness are also computed. The obtained results are discussed quantitatively and qualitatively.

Originality/value

Heat transfer in ferrofluid flow over a radially stretchable and uniformly heated rotating disk has not been investigated yet.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 2005

Boštjan Brank, Said Mamouri and Adnan Ibrahimbegović

Aims to address the issues pertaining to dynamics of constrained finite rotations as a follow‐up from previous considerations in statics.

Abstract

Purpose

Aims to address the issues pertaining to dynamics of constrained finite rotations as a follow‐up from previous considerations in statics.

Design/methodology/approach

A conceptual approach is taken.

Findings

In this work the corresponding version of the Newmark time‐stepping schemes for the dynamics of smooth shells employing constrained finite rotations is developed. Different possibilities to choose the constrained rotation parameters are discussed, with the special attention given to the preferred choice of the incremental rotation vector.

Originality/value

The pertinent details of consistent linearization, rotation updates and illustrative numerical simulations are supplied.

Details

Engineering Computations, vol. 22 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2017

Siva Reddy Sheri, Chamkha Ali. J. and Anjan Kumar Suram

The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a…

Abstract

Purpose

The purpose of this paper is to analyze the thermal-diffusion and diffusion-thermo effects on magnetohydrodynamics (MHD) natural convective flow through porous medium in a rotating system with ramped temperature.

Design/methodology/approach

Using the non-dimensional variables, the flow governing equations along with corresponding initial and boundary conditions have been transformed into non-dimensional form. These non-dimensional partial differential equations are solved by using finite element method. This method is powerful and stable. It provides excellent convergence and flexibility in providing solutions.

Findings

The effects of Soret number, Dufour number, rotation parameter, magnetic parameter, Hall current parameter, permeability parameter, thermal Grashof number, solutal Grashof number, Prandtl number, thermal radiation parameter, heat absorption parameter, Schmidt number, chemical reaction parameter and time on the fluid velocities, temperature and concentration are represented graphically in a significant way and the influence of pertinent flow governing parameters on the skin frictions and Nusselt number are presented in tabular form. On the other hand, a comparison for validation of the numerical code with previously published work is performed, and an excellent agreement is observed for the limited case existing literature.

Practical implications

A very useful source of information for researchers on the subject of MHD flow through porous medium in a rotating system with ramped temperature.

Originality/value

The problem is moderately original, as it contains many effects like thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects and chemical reaction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 April 2020

Sunita Deswal, Devender Sheoran and Kapil Kumar Kalkal

The purpose of this paper is to establish a model of two-dimensional half-space problem of linear, isotropic, homogeneous, initially stressed, rotating thermoelastic medium with…

Abstract

Purpose

The purpose of this paper is to establish a model of two-dimensional half-space problem of linear, isotropic, homogeneous, initially stressed, rotating thermoelastic medium with microtemperatures. The expressions for different physical variables such as displacement distribution, stress distribution, temperature field and microtemperatures are obtained in the physical domain.

Design/methodology/approach

Normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

Numerical computations have been carried out with the help of MATLAB programming, and the results are illustrated graphically. Comparisons are made to show the effects of rotation, time and microtemperatures on the resulting quantities. The graphical results indicate that the effects of rotation, microtemperatures and time are very pronounced on the field variables.

Originality/value

In the present work, we have investigated the effects of rotation, time and microtemperature in an initially stressed thermoelastic medium. Although various investigations do exist to observe the disturbances in a thermoelastic medium under the effects of different parameters, the work in its present form, i.e. the disturbances in a thermoelastic medium in the presence of angular velocity, initial stress and microtemperature have not been studied till now. The present work is useful and valuable for analysis of problems involving coupled thermal shock, rotation parameter, microtemperatures and elastic deformation.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 October 2022

Sheeba Juliet S., Vidhya M. and Govindarajan A.

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a…

Abstract

Purpose

This study aims to investigate the effect of externally applied magnetic force and heat transfer with a heat source/sink on the Couette flow with viscous dissipation in a horizontal rotating channel. The magnetic force is added to the governing equations. The effects of fluid flow parameters are observed under the applied magnetic force. In this system, the magnetic force is applied perpendicular to the plane of the fluid flow. In recent years, the magnetic field has renewed interest in aerospace technology. The physical and theoretical approach in the multidisciplinary field of magneto fluid dynamics (MFD) is applied in the field of aerospace vehicle design.

Design/methodology/approach

Authors use the perturbation method to solve and find the approximate solutions of differential equations. First, convert the partial differential equation to ordinary differential equation and calculate the approximate solutions in two cases. The first solution got by assuming heat generating in the fluid and the second one got when heat absorbing. After applying the external magnetic force, the effects of various fluid parameters velocity, temperature, skin friction coefficient and Nusselt number are found and discussed using tables and graphs.

Findings

It is found that the velocity of the fluid has decreased tendency when the rotation of the fluid and magnetic force on the fluid increases. The temperature of the fluid, Prandtl value and Eckert number increased when the heat source generated heat. When heat absorbs the heat, sink parameter increases and the temperature of the fluid decreases. Also, while heat absorbs, the temperature increases when the Prandtl value and Eckert number increase.

Originality/value

The skin friction coefficient on the surface increases, when the rotation parameter and the magnetic force parameter of the fluid increase. In the case of heat generating, the Nusselt number increased, while the Eckert number and Prandtl numbers increased. Also, the Nusselt number has larger values when the heat source parameter has near the constant temperature, and it has smaller values when the temperature varies. In the case of heat-absorbing, the Nusselt number decreased when the Eckert and Prandtl numbers increased. Also, the Nusselt number varies up and down while the heat absorbing parameter increases.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 January 2023

Devender Sheoran, Komal Yadav, Baljit Singh Punia and Kapil Kumar Kalkal

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE…

Abstract

Purpose

The purpose of this paper is to analyse the transient effects in a functionally graded photo-thermoelastic (TE) medium with gravity and rotation by considering two generalised TE theories: Lord–Shulman (LS) and Green–Lindsay (GL). The governing equations are derived in rectangular Cartesian coordinates for a two dimensional problem.

Design/methodology/approach

All the physical properties of the semiconductor are supposed to vary exponentially with distance. The analytical solution is procured by employing normal mode technique on the resulting non-dimensional coupled field equations with appropriate boundary conditions.

Findings

For the mechanically loaded thermally insulated surface, normal displacement, stress components, temperature distribution and carrier density are calculated numerically with the help of MATLAB software for a silicon semiconductor and displayed graphically. Some particular cases of interest have also been deduced from the present results.

Originality/value

The effects of rotation and non-homogeneity on the different physical fields are investigated on the basis of analytical and numerical results. Comparisons are made with the results predicted by GL theory in the presence and absence of gravity for different values of time. Comparisons are also made between the three theories in the presence of rotation, gravity and in-homogeneity. Such problems are very important in many dynamical systems.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 November 2022

Sandeep Singh Sheoran, Shilpa Chaudhary and Kapil Kumar Kalkal

The purpose of this paper is to study the transient thermoelastic interactions in a nonlocal rotating magneto-thermoelastic medium with temperature-dependent properties…

Abstract

Purpose

The purpose of this paper is to study the transient thermoelastic interactions in a nonlocal rotating magneto-thermoelastic medium with temperature-dependent properties. Three-phase-lag (TPL) model of generalized thermoelasticity is employed to study the problem. An initial magnetic field with constant intensity acts parallel to the bounding plane. Therefore, Maxwell's theory of electrodynamics has been effectively introduced and the expression for Lorentz's force is obtained with the help of modified Ohm's law.

Design/methodology/approach

The normal mode technique has been adopted to solve the resulting non-dimensional coupled field equations to obtain the expressions of physical field variables.

Findings

For uniformly distributed thermal load, normal displacement, temperature distribution and stress components are calculated numerically with the help of MATLAB software for a copper material and the results are illustrated graphically. Some particular cases of interest are also deduced from the present study.

Originality/value

Influences of nonlocal parameter, rotation, temperature-dependent properties, magnetic field and time are carefully analyzed for mechanically stress free boundary and uniformly distributed thermal load. The present work is useful and valuable for analysis of problem involving thermal shock, nonlocal parameter, temperature-dependent elastic and thermal moduli.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 August 2014

Sahin Ahmed and Ali J. Chamkha

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in…

Abstract

Purpose

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in presence of a strong transverse magnetic filled and with the application of thermal radiation. In this investigation, the fluid is considered to be of viscous, electrically conducting, Newtonian and radiating and is optically thin with a relatively low density. Excellent agreement is obtained for exact solutions with those of previously published works.

Design/methodology/approach

In this investigation, a closed form analytical method based on the complex notations for the velocity, temperature and the pressure is developed to solve the governing coupled, non-linear partial differential equations. The accuracy and effectiveness of the method are demonstrated.

Findings

Interestingly observed that, the Lorentizian body force is not act as a drag force as in conventional MHD flows, but as an aiding body force and this will serve to accelerate the flow and boost the primary velocities. Due to the large rotation of the channel, the primary velocities are become flattered and shift towards the walls of the channel. With a rise in Darcian drag force, flow velocity and shear stress are found to reduce. Moreover, increasing thermal radiation and rotation of the channel strongly depress the shear stress, and maximum flow reversal, i.e. back flow is observed due to large Darcian resistance, thermal radiation and rotation.

Research limitations/implications

The analysis is valid for unsteady, two-dimensional laminar flow of an optically thick no-gray gas, electrically conducting, and Newtonian fluid past an isothermal vertical surface adjacent to the Darcian regime with variable surface temperature. An extension to three-dimensional flow case is left for future work.

Practical implications

Practical interest of such study includes applications in magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors, magnetic suppression of molten semi-conducting materials and meteorology and in many branches of engineering and science. It is well known that the effect of thermal radiation is important in space technology and high-temperature processes. Thermal radiation also plays an important role in controlling heat transfer process in polymer processing industry.

Originality/value

The paper presents useful conclusions with the help of graphical results obtained from studying exact solutions based on complex notations for Darcian drag force, rotation of the channel and conduction-radiation heat transfer interaction by unsteady rotational flow in a vertical porous channel embedded in a Darcian porous regime under the application hydromagnetic force. The results of this study may be of interest to engineers for heat transfer augmentation and drag reduction in heat exchangers as well as MHD boundary layer control of re-entry vehicles, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 10000