Search results

1 – 10 of over 1000
Article
Publication date: 6 September 2021

Bruna Caroline Campos, Felicio Bruzzi Barros and Samuel Silva Penna

The aim of this paper is to present a novel data transfer technique to simulate, by G/XFEM, a cohesive crack propagation coupled with a smeared damage model. The efficiency of…

Abstract

Purpose

The aim of this paper is to present a novel data transfer technique to simulate, by G/XFEM, a cohesive crack propagation coupled with a smeared damage model. The efficiency of this technique is evaluated in terms of processing time, number of Newton–Raphson iterations and accuracy of structural response.

Design/methodology/approach

The cohesive crack is represented by the G/XFEM enrichment strategy. The elements crossed by the crack are divided into triangular cells. The smeared crack model is used to describe the material behavior. In the nonlinear solution of the problem, state variables associated with the original numerical integration points need to be transferred to new points created with the triangular subdivision. A nonlocal strategy is tailored to transfer the scalar and tensor variables of the constitutive model. The performance of this technique is numerically evaluated.

Findings

When compared with standard Gauss quadrature integration scheme, the proposed strategy may deliver a slightly superior computational efficiency in terms of processing time. The weighting function parameter used in the nonlocal transfer strategy plays an important role. The equilibrium state in the interactive-incremental solution process is not severely penalized and is readily recovered. The advantages of such proposed technique tend to be even more pronounced in more complex and finer meshes.

Originality/value

This work presents a novel data transfer technique based on the ideas of the nonlocal formulation of the state variables and specially tailored to the simulation of cohesive crack propagation in materials governed by the smeared crack constitutive model.

Article
Publication date: 1 January 1993

ADNAN IBRAHIMBEGOVIĆ and FRANÇOIS FREY

An efficient implementation of a constitutive model for reinforced concrete plates is discussed in this work. The constitutive model is set directly in terms of stress resultants…

Abstract

An efficient implementation of a constitutive model for reinforced concrete plates is discussed in this work. The constitutive model is set directly in terms of stress resultants and their energy conjugate strain measures, relating their total values. The latter simplification is justified by our primary goal being an evaluation of the limit load of a reinforced concrete plate. A concept of the ‘rotating crack model’ is utilized in proposing the constitutive model to relate the principal values of bending moments and the corresponding values of curvatures. Efficient implementation is provided by a very robust, but inexpensive plate element. The element is based on an assumed shear strain field and a set of incompatible bending modes, which provides that the non‐linear computations, pertinent to constitutive model, can be carried out locally, i.e. independently at each numerical integration point. Set of numerical examples is presented to demonstrate a very satisfying performance of the proposed model.

Details

Engineering Computations, vol. 10 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 February 2012

Smitha Gopinath, Nagesh Iyer, J. Rajasankar and Sandra D'Souza

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell…

Abstract

Purpose

The purpose of this paper is to present integrated methodologies based on multilevel modelling concepts for finite element analysis (FEA) of reinforced concrete (RC) shell structures, with specific reference to account for the nonlinear behaviour of cracked concrete and the other associated features.

Design/methodology/approach

Geometric representation of the shell is enabled through multiple concrete layers. Composite characteristic of concrete is accounted by assigning different material properties to the layers. Steel reinforcement is smeared into selected concrete layers according to its position in the RC shell. The integrated model concurrently accounts for nonlinear effects due to tensile cracking, bond slip and nonlinear stress‐strain relation of concrete in compression. Smeared crack model having crack rotation capability is used to include the influence of tensile cracking of concrete. Propagation and change in direction of crack along thickness of shell with increase in load and deformation are traced using the layered geometry model. Relative movement between reinforcing steel and adjacent concrete is modelled using a compatible bond‐slip model validated earlier by the authors. Nonlinear iterative solution technique with imposed displacement in incremental form is adopted so that structures with local instabilities or strain softening can also be analysed.

Findings

Proposed methodologies are validated by evaluating ultimate strength of two RC shell structures. Nonlinear response of McNeice slab is found to compare well with that of experiment available in literature. Then, a RC cooling tower is analysed for factored wind loads to study its behaviour near ultimate load. Numerical validation demonstrates efficacy and usefullness of the proposed methodologies for nonlinear FEA of RC shell structures.

Originality/value

The present paper integrates critical methodologies used for behaviour modelling of concrete and reinforcement with the physical interaction among them. The study is unique by considering interaction of tensile cracking and bond‐slip which are the main contributors to nonlinearity in the nonlinear response of RC shell structures. Further, industrial application of the proposed modelling strategy is demonstrated by analysing a RC cooling tower shell for its nonlinear response. It is observed that the proposed methodologies in the integrated manner are unique and provide stability in nonlinear analysis of RC shell structures.

Article
Publication date: 1 April 1989

René de Borst and Jan G. Rots

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are…

Abstract

The behaviour of cracked finite elements is investigated. It is shown that spurious kinematic modes may emerge when softening type constitutive laws are employed. These modes are not always suppressed by surrounding elements. This is exemplified for a double‐notched concrete beam and for a Crack‐Line‐Wedge‐Loaded Double‐Cantilever‐Beam (CLWL—DCB). The latter example has been analysed for a large variety of finite elements and integration schemes. To investigate the phenomenon in greater depth an eigenvalue analysis has been carried out for some commonly used finite elements.

Details

Engineering Computations, vol. 6 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 January 1985

R. de Borst and P. Nauta

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into…

Abstract

A new model for handling non‐orthogonal cracks within the smeared crack concept is described. It is based on a decomposition of the total strain increment into a concrete and into a crack strain increment. This decomposition also permits a proper combination of crack formation with other non‐linear phenomena such as plasticity and creep and with thermal effects and shrinkage. Relations are elaborated with some other crack models that are currently used for the analysis of concrete structures. The model is applied to some problems involving shear failures of reinforced concrete structures such as a moderately deep beam and an axisymmetric slab. The latter example is also of interest in that it confirms statements that ‘reduced integration’ is not reliable for problems involving crack formation and in that it supports the assertion that identifying numerical divergence with structural failure may be highly misleading.

Details

Engineering Computations, vol. 2 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 February 2003

M.G. Cottrell, J. Yu, Z.J. Wei and D.R.J. Owen

In recent years, developments in the field of lightweight armour have been of primary importance to the defence industry. This necessity has led to many organisations adopting…

Abstract

In recent years, developments in the field of lightweight armour have been of primary importance to the defence industry. This necessity has led to many organisations adopting composite armours comprising both the traditional heavy armours and new lighter weight ceramic armours. The numerical modelling of metal based armour systems has been well documented over the years using purely continuum based methods; and also the modelling of brittle systems using discrete element methods, therefore it is the objective of this paper to demonstrate how a coupled finite and discrete element approach, can be used in the further understanding of the quantitative response of ceramic systems when subjected to dynamic loadings using a combination of adaptive continuum techniques and discrete element methods. For the class of problems encountered within the defence industry, numerical modelling has suffered from one principal weakness; for many applications the associated deformed finite element mesh can no longer provide an accurate description of the deformed material, whether this is due to large ductile deformation, or for the case of brittle materials, degradation into multiple bodies. Subsequently, two very different approaches have been developed to combat such deficiencies, namely the use of adaptive remeshing for the ductile type materials and a discrete fracture insertion scheme for the modelling of material degradation. Therefore, one of the primary objectives of this paper is to present examples demonstrating the potential benefits of explicitly coupling adaptive remeshing methods to the technique of discrete fracture insertion in order to provide an adaptive discontinuous solution strategy, which is computationally robust and efficient.

Details

Engineering Computations, vol. 20 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1996

C. Kropik and H.A. Mang

Contains a report on three‐dimensional finite element (FE) analyses of deformations and stresses resulting from the excavation of shallow underground railway tunnels. Multisurface…

Abstract

Contains a report on three‐dimensional finite element (FE) analyses of deformations and stresses resulting from the excavation of shallow underground railway tunnels. Multisurface elasto‐viscoplastic material models are employed for consideration of the mechanical behaviour of the soil and the shotcrete shell supporting the excavation. Both are formulated within the framework of closest point projection algorithms. For soil a cap model is used, consisting of a curved failure surface, a tension cut‐off and an elliptical cap. The latter allows consideration of the evolution of plastic strains even for the limiting case of a purely volumetric stress state. The movement of the cap is governed by a hardening law, describing the relation between the hydrostatic pressure and void ratio. The shotcrete model is a rotating crack model, taking ageing of the maturing concrete into account. It consists of a strain‐hardening Drucker‐Prager cone and three Rankine (crack) surfaces. Demonstrates the usefulness of the cap model to predict the mechanical behaviour of the soil by means of tests on remoulded, saturated clay. The model parameters of the clayey silt of Vienna, where the analysed tunnel is located, are fit to standard test results. The parameters of the shotcrete model are fit to test results published in the literature. Compares the analysis of a single‐track tunnel with the results of field measurements from sliding micrometers. Furthermore, the stresses in the shotcrete lining are examined. In view of the inhomogeneity of the material and of unavoidable deficiencies of the measurements it is fair to say that the mechanical effects resulting from the excavation of tunnels are modelled reasonably well.

Details

Engineering Computations, vol. 13 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 2001

D.R.J. Owen and Y.T. Feng

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention…

1480

Abstract

This paper outlines a dynamic domain decomposition‐based parallel strategy for combined finite/discrete element analysis of multi‐fracturing solids and discrete systems. Attention is focused on the parallelised interaction detection between discrete objects. Two graph representation models for discrete objects in contact are proposed which lay the foundation of the current development. In addition, a load imbalance detection and re‐balancing scheme is also suggested to enhance the parallel performance. Finally, numerical examples are provided to illustrate the parallel performance achieved with the current implementation.

Details

Engineering Computations, vol. 18 no. 3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2023

Fatima Barrarat, Karim Rayane, Bachir Helifa, Samir Bensaid and Iben Khaldoun Lefkaier

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their…

Abstract

Purpose

Detecting the orientation of cracks is a major challenge in the development of eddy current nondestructive testing probes. Eddy current-based techniques are limited in their ability to detect cracks that are not perpendicular to induced current flows. This study aims to investigate the application of the rotating electromagnetic field method to detect arbitrary orientation defects in conductive nonferrous parts. This method significantly improves the detection of cracks of any orientation.

Design/methodology/approach

A new rotating uniform eddy current (RUEC) probe is presented. Two exciting pairs consisting of similar square-shaped coils are arranged orthogonally at the same lifting point, thus avoiding further adjustment of the excitation system to generate a rotating electromagnetic field, eliminating any need for mechanical rotation and focusing this field with high density. A circular detection coil serving as a receiver is mounted in the middle of the excitation system.

Findings

A simulation model of the rotating electromagnetic field system is performed to determine the rules and characteristics of the electromagnetic signal distribution in the defect area. Referring to the experimental results aimed to detect artificial cracks at arbitrary angles in underwater structures using the rotating alternating current field measurement (RACFM) system in Li et al. (2016), the model proposed in this paper is validated.

Originality/value

CEDRAT FLUX 3D simulation results showed that the proposed probe can detect cracks with any orientation, maintaining the same sensitivity, which demonstrates its effectiveness. Furthermore, the proposed RUEC probe, associated with the exploitation procedure, allows us to provide a full characterization of the crack, namely, its length, depth and orientation in a one-pass scan, by analyzing the magnetic induction signal.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 September 2014

Denise Ferreira, Jesús Bairán, Antonio Marí and Rui Faria

A nonlinear finite element (FE) beam-column model for the analysis of reinforced concrete (RC) frames with due account of shear is presented in this paper. The model is an…

354

Abstract

Purpose

A nonlinear finite element (FE) beam-column model for the analysis of reinforced concrete (RC) frames with due account of shear is presented in this paper. The model is an expansion of the traditional flexural fibre beam formulations to cases where multiaxial behaviour exists, being an alternative to plane and solid FE models for the nonlinear analysis of entire frame structures. The paper aims to discuss these issues.

Design/methodology/approach

Shear is taken into account at different levels of the numerical model: at the material level RC is simulated through a smeared cracked approach with rotating cracks; at the fibre level, an iterative procedure guarantees equilibrium between concrete and transversal reinforcement, allowing to compute the biaxial stress-strain state of each fibre; at the section level, a uniform shear stress pattern is assumed in order to estimate the internal shear stress-strain distribution; and at the element level, the Timoshenko beam theory takes into account an average rotation due to shear.

Findings

The proposed model is validated through experimental tests available in the literature, as well as through an experimental campaign carried out by the authors. The results on the response of RC elements critical to shear include displacements, strains and crack patterns and show the capabilities of the model to efficiently deal with shear effects in beam elements.

Originality/value

A formulation for the nonlinear shear-bending interaction based on the fixed stress approach is implemented in a fibre beam model. Shear effects are accurately accounted during all the nonlinear path of the structure in a computationally efficient manner.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000