Search results

1 – 10 of over 4000
Article
Publication date: 1 April 1992

SHIN FANN, WEN‐JEI YANG and S. MOCHIZUKI

A theoretical study is performed on three‐dimensional, heat transfer and fluid flow in radially rotating heated channels with steady, laminar throughflow. Consideration is given…

Abstract

A theoretical study is performed on three‐dimensional, heat transfer and fluid flow in radially rotating heated channels with steady, laminar throughflow. Consideration is given to the channel of different geometry. Both the rotational speed and throughflow rate are varied. The flow is hydrodynamically and thermally developing, with a constant wall heat flux. The velocity‐vorticity method is employed in the formulation and numerical results are obtained by means of a finite‐difference technique. The Nusselt number, friction factor, and temperature and velocity distributions are determined, and the role of the Coriolis force on the entrance‐region transport phenomena is investigated. Results are compared with the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 June 2020

N. Mahato, S.M. Banerjee, R.N. Jana and S. Das

The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating…

Abstract

Purpose

The article focuses on the magnetohydrodynamic (MHD) convective flow of MoS2-SiO2 /ethylene glycol (EG) hybrid nanofluid. The effectiveness of Hall current, periodically heating wall and shape factor of nanoparticles on the magnetized flow of hybrid nanocomposite molybdenum disulfide- silicon dioxide (MoS2-SiO2) suspended in ethylene glycol (EG) in a vertical rotating channel under the influence of strong magnetic dipole (Hall effect) and thermal radiation is assessed. One of the channel walls has an oscillatory temperature gradient. Four different shapes (i.e. brick, cylinder, platelet and blade) of nanoparticles disseminated in base fluid (EG) are considered for simulation of the flow.

Design/methodology/approach

The analytical solution of governing equations has been presented. Influences of emerging physical parameters on the velocity and temperature profiles, the shear stresses and the rate of heat transfer are pointed out and discussed via graphs and tables.

Findings

The analysis revealed that Hall parameter has suppressing behavior on the velocity profiles within the rotating channel. The impact of nanoparticle shape factor advances the temperature characteristics significantly in the rotating channel. Brick-shape nanoparticles put up relatively low-temperature distribution in the rotating channel. The Hall parameter reduces the amplitudes of the shear stresses at the channel wall. However, the radiation parameter enhances the amplitude of the rate of heat transfer at the channel wall.

Social implications

The important technical advantage of hybrid composition of nanoparticles as a drug carrier is its stability, high thermal conductivity, high load carrying capacity, etc. The proposed model may be beneficial in biomedical engineering, automobile parts, mineral and cleaning oils manufacturing, rubber and plastic industries.

Originality/value

To the best of our knowledge, there is little or no report on the aspects of assessment of the effectiveness of Hall current and nanoparticle shape factor on an MHD flow and heat transfer of an electrically conducting MoS2-SiO2/EG ethylene glycol-based hybrid nanofluid confined in a vertical channel with periodically varying wall temperature subject to a rotating frame. The present work furnishes a robust benchmark for the dynamics of nanofluids.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 March 2018

Jinsheng Wang, Lei Luo, Lei Wang, Bengt Ake Sunden and Songtao Wang

The fluid flow in a rotating channel is obviously different from that in a stationary channel due to the existence of Coriolis force, which, in turn, enhances the heat transfer on…

Abstract

Purpose

The fluid flow in a rotating channel is obviously different from that in a stationary channel due to the existence of Coriolis force, which, in turn, enhances the heat transfer on the trailing side and reduces the heat transfer on the leading side. The purpose of this paper is to study various rib configurations combined with channel orientation on heat transfer and frictional loss in a rotating channel.

Design/methodology/approach

In the present study, the k-ω SST model was used as the turbulence model. The fluid flow direction in the channel is radially outward. The angle between the rotation axis and leading side is 45°. The channel aspect ratio (W/H) is 2, the blockage ratio (e/Dn ) is 0.1 and the pitch ratio (P/e) is 10. The Reynolds number is fixed at 10,000 and the rotation number varies from 0 to 0.7. Angled ribs, reversed angled ribs, standard V-shaped ribs and outer-leaning V-shaped ribs, are examined.

Findings

It is found that the reversed angled rib configuration and the outer-leaning V-shaped rib configuration display better heat transfer performance than the V-shaped ribs in rotating condition, which is in contrast to stationary condition. At the leading side, the reversed angled rib and the outer-leaning V-shaped rib show better performance in recovering the heat transfer recession due to the negative effects of the Coriolis force.

Research limitations/implications

In the present study, the fluid is incompressible with constant thermophysical properties and the flow is steady.

Practical implications

The results of this study will be helpful in design of ribbed channels internal cooling for turbine blade.

Originality/value

The results imply that the rib configuration combined with channel orientation significantly impacts the heat transfer performance in a rotating channel. The reversed angled rib and the outer-leaning V-shaped rib show better heat transfer performance than standard V-shaped ribs, especially at high Rotating numbers, which is in contrast to stationary condition. The outer-leaning V-shaped rib has a relatively good heat transfer uniformity along the widthwise direction.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Seyyed Mostafa Hoseinalipour, Hamidreza Shahbazian and Bengt Ake Sunden

The study aims to focus on rotation effects on a ribbed channel of gas turbine blades for internal cooling. The combination and interaction between secondary flows generated by…

Abstract

Purpose

The study aims to focus on rotation effects on a ribbed channel of gas turbine blades for internal cooling. The combination and interaction between secondary flows generated by angled rib geometry and Coriolis forces in the rotating channel are studied numerically.

Design/methodology/approach

A radially outward flow passage as an internal cooling test model with and without ribs is used to perform the investigation. Aspect ratio of the passage is 1:1. Square ribs with e/Dh = 0.1, p/e = 10 and four various rib angles of 90°, 75°, 60° and 45° are configured on both the leading and trailing surfaces along the rotating duct. The study covers a Reynolds number of 10,000 and Rotation number in the range of 0-0.15.

Findings

Nusselt numbers in the ribbed duct are 2.5 to 3.5 times those of a smooth square duct, depending on the Rotation number and rib angle. The maximum value is attained for the 45° ribbed surface. The synergy angle between the velocity and temperature gradients is improved by the angled rib secondary flows and Coriolis vortex. The decrease of the synergy angle is 8.9, 13.4, 12.1 and 10.1 per cent for the 90°, 75°, 60° and 45° ribbed channels with rotation, respectively. Secondary flow intensity is increased by rotation in the 90° and 75° ribbed ducts and is decreased in 45° and 60° ribbed cases for which the rib-induced secondary flow dominates.

Originality/value

The primary motivation behind this work is to investigate the possibility of heat transfer enhancement by vortex flow with developing turbulence in the view point of the field synergy principle and secondary flow intensity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 1998

J.J. Hwang, T.Y. Lia and S.H. Chen

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this…

Abstract

Turbulent fluid flow and heat transfer characteristics are analyzed numerically for fluids flowing through a rotating periodical two‐pass square channel. The smooth walls of this two‐pass channel are subject to a constant heat flux. A two‐equation kε turbulence model with modified terms for Coriolis and rotational buoyancy is employed to resolve this elliptic problem. The duct through‐flow rate and rotating speed are fixed constantly; while the wall heat flux into the fluid is varied to examine the rotating buoyancy effect on the heat transfer and fluid flow characteristics. It is disclosed that the changes in local heat transfer due to the rotational buoyancy in the radially outward flow are more significant than those in the radially inward flow. However, the channel averaged heat transfer is altered slightly due to the rotational buoyancy in the both ducts. Whenever the buoyancy effects are sufficiently strong, the flow reversal appears over the leading face of the radially outward‐flow channel, and the radial distance for initiation of flow separation decreases with increasing the buoyancy parameter. A comparison of the present numerical results with the available experimental data by taking buoyancy into consideration is also presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 8 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 August 2014

Sahin Ahmed and Ali J. Chamkha

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in…

Abstract

Purpose

The purpose of this paper is to develop and correct the problem studied by Makinde and Mhone (2005) to a rotating vertical porous channel immersed in a Darcian porous regime in presence of a strong transverse magnetic filled and with the application of thermal radiation. In this investigation, the fluid is considered to be of viscous, electrically conducting, Newtonian and radiating and is optically thin with a relatively low density. Excellent agreement is obtained for exact solutions with those of previously published works.

Design/methodology/approach

In this investigation, a closed form analytical method based on the complex notations for the velocity, temperature and the pressure is developed to solve the governing coupled, non-linear partial differential equations. The accuracy and effectiveness of the method are demonstrated.

Findings

Interestingly observed that, the Lorentizian body force is not act as a drag force as in conventional MHD flows, but as an aiding body force and this will serve to accelerate the flow and boost the primary velocities. Due to the large rotation of the channel, the primary velocities are become flattered and shift towards the walls of the channel. With a rise in Darcian drag force, flow velocity and shear stress are found to reduce. Moreover, increasing thermal radiation and rotation of the channel strongly depress the shear stress, and maximum flow reversal, i.e. back flow is observed due to large Darcian resistance, thermal radiation and rotation.

Research limitations/implications

The analysis is valid for unsteady, two-dimensional laminar flow of an optically thick no-gray gas, electrically conducting, and Newtonian fluid past an isothermal vertical surface adjacent to the Darcian regime with variable surface temperature. An extension to three-dimensional flow case is left for future work.

Practical implications

Practical interest of such study includes applications in magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear reactors, magnetic suppression of molten semi-conducting materials and meteorology and in many branches of engineering and science. It is well known that the effect of thermal radiation is important in space technology and high-temperature processes. Thermal radiation also plays an important role in controlling heat transfer process in polymer processing industry.

Originality/value

The paper presents useful conclusions with the help of graphical results obtained from studying exact solutions based on complex notations for Darcian drag force, rotation of the channel and conduction-radiation heat transfer interaction by unsteady rotational flow in a vertical porous channel embedded in a Darcian porous regime under the application hydromagnetic force. The results of this study may be of interest to engineers for heat transfer augmentation and drag reduction in heat exchangers as well as MHD boundary layer control of re-entry vehicles, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1993

SHIN FANN and WEN‐JEI YANG

A numerical study is performed to investigate flow instability phenomena in a square channel with steady, laminar throughflow. The channel rotates around an axis perpendicular to…

Abstract

A numerical study is performed to investigate flow instability phenomena in a square channel with steady, laminar throughflow. The channel rotates around an axis perpendicular to the channel longitudinal axis. The flow field extends from the channel entrance to a distance of 120 to 600Dh. The range of Reynolds number is Re = 300−2000. The inlet flow velocity is assumed uniform. Surface vorticity intensity is introduced to indicate the variation of vortices. It is revealed that at intermediate Reynolds numbers (680 > Re > 300), the flow is characterized by three vortex patterns: at slow rotation there is one vortex pair; at intermediate rotation a secondary vortex, in addition to the original vortex, emerges near the trailing wall and then breaks down downstream; and at rapid rotation the secondary vortex does not exist with the flow being restabilized to form a single‐pair vortex pattern. At low Reynolds numbers (Re ≤ 300), the flow exhibits a single‐pair vortex pattern, while at high Reynolds numbers (Re ≥ 680), the flow experiences the emergence and breakdown of a secondary vortex, but no restabilization is found with an increase in the rotational speed. It is also disclosed that the variation of the vortices is related to the distance from the inlet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2018

A.A. Avramenko, N.P. Dmitrenko, I.V. Shevchuk, A.I. Tyrinov and V.I. Shevchuk

The paper aims to consider heat transfer in incompressible flow in a rotating flat microchannel with allowance for boundary slip conditions of the first and second order. The…

Abstract

Purpose

The paper aims to consider heat transfer in incompressible flow in a rotating flat microchannel with allowance for boundary slip conditions of the first and second order. The novelty of the paper encompasses analytical and numerical solutions of the problem, with the latter based on the lattice Boltzmann method (LBM). The analytical solution of the problem includes relations for the velocity and temperature profiles and for the Nusselt number depending on the rotation rate of the microchannel and slip velocity. It was demonstrated that the velocity profiles at high rotation rates transform from parabolic to M-shaped with a minimum at the channel axis. The temperature profiles tend to become uniform (i.e. almost constant). An increase in the channel rotation rate contributes to the increase in the Nusselt number. An increase in the Prandtl number causes a similar effect. The trend caused by the effect of the second-order slip boundary conditions depends on the closure hypothesis. It is shown that heat transfer in a flat microchannel can be successfully modeled using the LBM methodology, which takes into account the second-order boundary conditions.

Design/methodology/approach

The paper is based on the comparisons of an analytical solution and a numerical solution, which employs the lattice Boltzmann method. Both mathematical approaches used the first-order and second-order slip boundary conditions. The results obtained using both methods agree well with each other.

Findings

The analytical solution of the problem includes relations for the velocity and temperature profiles and for the Nusselt number depending on the rotation rate of the microchannel and slip velocity. It was demonstrated that the velocity profiles at high rotation rates transform from parabolic to M-shaped with a minimum at the channel axis. The temperature profiles tend to become uniform (i.e. almost constant). The increase in the channel rotation rate contributes to the increase in the Nusselt number. An increase in the Prandtl number causes the similar effect. The trend caused by the effect of the second-order slip boundary conditions depends on the closure hypothesis. It is shown that heat transfer in a flat microchannel can be successfully modeled using the LBM methodology, which considers the second-order boundary conditions.

Originality/value

The novelty of the paper encompasses analytical and numerical solutions of the problem, whereas the latter are based on the LBM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2022

Han Yan, Lei Luo, Junfeng Zhang, Wei Du, Dan Huang and Songtao Wang

This paper aims to investigate the influences of dimple location on the heat transfer performance of a pin fin-dimpled channel with upright/curved/inclined pin fins under…

Abstract

Purpose

This paper aims to investigate the influences of dimple location on the heat transfer performance of a pin fin-dimpled channel with upright/curved/inclined pin fins under stationary and rotating conditions.

Design/methodology/approach

Numerical methods based on a realizable k-ε turbulent model are used to conduct this study. Three kinds of pin fins (upright, curved, inclined) and three dimple locations (front, middle, behind) are studied for Ro varying from 0 to 0.5.

Findings

On the whole, pin fin plays a dominated role in heat transfer performance compared to dimple. The heading path and interaction of the longitudinal secondary flow and jet-like flow critically affect heat transfer performance. The formation, development and impingement of jet-like flow and longitudinal secondary flow are significantly affected by dimple locations. Dimple at behind position shows the poorest heat transfer enhancement.

Originality/value

This study is an extend of another previous study in which an innovative curved pin fin is proposed. The originality of this paper is to evaluate the heat transfer performance for the combined cooling structure of dimple and pin fin, which will provide original and useful application and experience for turbine blade design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 June 2016

B Mahanthesh, B J Gireesha and R S R Gorla

The purpose of this paper is to numerically solve the problem of an unsteady squeezing three-dimensional flow and heat transfer of a nanofluid in rotating vertical channel of…

Abstract

Purpose

The purpose of this paper is to numerically solve the problem of an unsteady squeezing three-dimensional flow and heat transfer of a nanofluid in rotating vertical channel of stretching left plane. The fluid is assumed to be Newtonian, incompressible and electrically conducting embedded with nanoparticles. Effect of internal heat generation/ absorption is also considered in energy equation. Four different types of nanoparticles are considered, namely, copper (Cu), alumina (Al2O3), silver (Ag) and titanium oxide (TiO2) with the base fluid as water. Maxwell-Garnetts and Brinkman models are, respectively, employed to calculate the effective thermal conductivity and viscosity of the nanofluid.

Design/methodology/approach

Using suitable similarity transformations, the governing partial differential equations are transformed into set of ordinary differential equations. Resultant equations have been solved numerically using Runge-Kutta-Fehlberg fourth fifth order method for different values of the governing parameters. Effects of pertinent parameters on normal, axial and tangential components of velocity and temperature distributions are presented through graphs and discussed in detail. Further, effects of nanoparticle volume fraction, squeezing parameter, suction/injection parameter and heat source/sink parameter on skin friction and local Nusselt number profiles for different nanoparticles are presented in tables and analyzed.

Findings

Squeezing effect enhances the temperature field and consequently reduces the heat transfer rate. Large values of mixed convection parameter showed a significant effect on velocity components. Also, in many heat transfer applications, nanofluids are potentially useful because of their novel properties. They exhibit high-thermal conductivity compared to the base fluids. Further, squeezing and rotation effects are desirable in control the heat transfer.

Originality/value

Three-dimensional mixed convection flows over in rotating vertical channel filled with nanofluid are very rare in the literature. Mixed convection squeezing three-dimensional flow in a rotating channel filled with nanofluid is first time investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000