Search results

1 – 10 of 624
Content available
Article
Publication date: 1 June 1998

256

Abstract

Details

Industrial Lubrication and Tribology, vol. 50 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Industrial Lubrication and Tribology, vol. 54 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 August 2001

74

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 48 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 December 2003

108

Abstract

Details

Industrial Lubrication and Tribology, vol. 55 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 8 February 2021

Xuejun Zhao, Yong Qin, Hailing Fu, Limin Jia and Xinning Zhang

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the…

Abstract

Purpose

Fault diagnosis methods based on blind source separation (BSS) for rolling element bearings are necessary tools to prevent any unexpected accidents. In the field application, the actual signal acquisition is usually hindered by certain restrictions, such as the limited number of signal channels. The purpose of this study is to fulfill the weakness of the existed BSS method.

Design/methodology/approach

To deal with this problem, this paper proposes a blind source extraction (BSE) method for bearing fault diagnosis based on empirical mode decomposition (EMD) and temporal correlation. First, a single-channel undetermined BSS problem is transformed into a determined BSS problem using the EMD algorithm. Then, the desired fault signal is extracted from selected intrinsic mode functions with a multi-shift correlation method.

Findings

Experimental results prove the extracted fault signal can be easily identified through the envelope spectrum. The application of the proposed method is validated using simulated signals and rolling element bearing signals of the train axle.

Originality/value

This paper proposes an underdetermined BSE method based on the EMD and the temporal correlation method for rolling element bearings. A simulated signal and two bearing fault signal from the train rolling element bearings show that the proposed method can well extract the bearing fault signal. Note that the proposed method can extract the periodic fault signal for bearing fault diagnosis. Thus, it should be helpful in the diagnosis of other rotating machinery, such as gears or blades.

Details

Smart and Resilient Transportation, vol. 3 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 9 December 2022

Rui Wang, Shunjie Zhang, Shengqiang Liu, Weidong Liu and Ao Ding

The purpose is using generative adversarial network (GAN) to solve the problem of sample augmentation in the case of imbalanced bearing fault data sets and improving residual…

Abstract

Purpose

The purpose is using generative adversarial network (GAN) to solve the problem of sample augmentation in the case of imbalanced bearing fault data sets and improving residual network is used to improve the diagnostic accuracy of the bearing fault intelligent diagnosis model in the environment of high signal noise.

Design/methodology/approach

A bearing vibration data generation model based on conditional GAN (CGAN) framework is proposed. The method generates data based on the adversarial mechanism of GANs and uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data imbalance based on CGAN and improved residual network with attention mechanism is proposed.

Findings

The method proposed in this paper is verified by the western reserve data set and the truck bearing test bench data set, proving that the CGAN-based data generation method can form a high-quality augmented data set, while the CGAN-based and improved residual with attention mechanism. The diagnostic model of the network has better diagnostic accuracy under low signal-to-noise ratio samples.

Originality/value

A bearing vibration data generation model based on CGAN framework is proposed. The method generates data based on the adversarial mechanism of GAN and uses a small number of real samples to generate data, thereby effectively expanding imbalanced data sets. Combined with the data augmentation method based on CGAN, a fault diagnosis model of rolling bearing under the condition of data imbalance based on CGAN and improved residual network with attention mechanism is proposed.

Details

Smart and Resilient Transportation, vol. 5 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Content available
Article
Publication date: 1 February 1998

59

Abstract

Details

Industrial Lubrication and Tribology, vol. 50 no. 1
Type: Research Article
ISSN: 0036-8792

Open Access
Article
Publication date: 29 May 2020

Li Cui

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating…

4342

Abstract

Purpose

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating life model of ball bearings, which is expected for calculating fatigue life of ball bearings more accurately under vibration load, especially in high speed and light load conditions.

Design/methodology/approach

A new fatigue damage accumulation rating life model of ball bearings considering time-varying vibration load is proposed. Vibration equations of rotor-bearing system are constructed and solved by Runge–Kutta method. The modified rating life and modified reference rating life model under vibration load is also proposed. Contrast of the three fatigue life models and the influence of dynamic balance level, rotating speed, preload of ball bearings on bearing’s fatigue life are analyzed.

Findings

To calculate fatigue rating life of ball bearings more accurately under vibration load, especially in high speed and light load conditions, the fatigue damage accumulation rating life model should be considered. The optimum preload has an obvious influence on fatigue rating life.

Originality/value

This paper used analytical method and model that is helpful for design of steel ball bearing in high speed, light load and vibration load conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0180/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 624