Search results

1 – 6 of 6
Article
Publication date: 30 September 2014

Xiao-Bo Wang, Wen-Jie Xu, Bing-Yin Zhang and Qi-Cheng Sun

Rock-fill dams are embankments of compacted free-draining granular earth containing an impervious zone. Earth utilized in such dams often contains a high percentage of large…

Abstract

Purpose

Rock-fill dams are embankments of compacted free-draining granular earth containing an impervious zone. Earth utilized in such dams often contains a high percentage of large particles – hence the term rock-fill. Mass stability of these dams results from friction and particle interactions rather than through a cementing agent binding the particles together. However, high-stress conditions and prolonged exposure to the elements can severely damage rock-fill. Therefore, understanding and modeling rock-fill breakage is important for dam engineering. The purpose of this paper is to improve discontinuous deformation analysis (DDA) techniques for modeling rock-fill breakage, proving the new method using simulations of spherical particle crushing.

Design/methodology/approach

This work models rock-fill as bonded ellipsoid particles, and develops an improved DDA method to model the breakage of particle assemblies. The paper starts by describing the principles of three-dimensional DDA for spherical particles, and then derives the submatrices for normal contact, shear contact, and frictional force. The new algorithm incorporates a bond model with a revised open-close iteration algorithm into the DDA method to simulate particle crushing. To validate the improved DDA method, calculated particle contacts and movements are validated against theoretical results. Finally, this work performs a series of point-loading experimental tests for cement ellipsoid particles of both high and low compression strengths, with the test results compared against the results from corresponding DDA simulations.

Findings

In particle crushing tests, the force and displacement show an approximately linear relationship until the crushing point, at which point low compression ellipsoid particles split into several large pieces while the high-compression particles break into many small fragments. The DDA simulation results are in good agreement with the crushing tests, demonstrating the validity of the DDA method for solving particle crushing problems. Although the improved DDA model is applicable to rock-fill particle crushing studies, some issues remain, particularly in increasing calculation efficiency and performing large-scale computations and long real-time simulations. Future research should address these issues.

Originality/value

A bond model with a revised open-close iteration algorithm is incorporated into the DDA method. The simulated results shed insight into rock-fill crushing mechanisms, an element of concern in engineering practices.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 November 2011

Amarjit Singh

The purpose of this paper is to inform facility managers of the type of failure affecting certain pipe types more than others. This is useful in asset management as preventive…

Abstract

Purpose

The purpose of this paper is to inform facility managers of the type of failure affecting certain pipe types more than others. This is useful in asset management as preventive maintenance can be undertaken for those pipe types that experience high probabilities of failure.

Design/methodology/approach

The probability of a specific pipe type failing given the cause of break, age at failure, pipe diameter, and type of soil at the location of the break was found using inventory and main break data from the Honolulu Board of Water Supply (HBWS). Bayes’ theorem was then applied to find the posterior probabilities of failure starting from the prior probabilities of failure.

Findings

It was observed that the greatest probabilities of failure involved corrosion, pipes aged between 20‐30 years, 8″ pipes, and pipes in fill material. The pipe types were ranked and scored based on their probability of failing due to break cause, age, diameter, and soil type. Cast iron pipes were shown to have the highest probability of failing. As such, attention should be given to replace segments of cast iron pipes as they reach the end of their service lives.

Practical implications

This study serves to address a major query in asset management at a public utility, that of which pipes should be selected for replacement when they reach the end of their service life. In addition, this study helps to understand the causes of failure for the various types of pipe.

Social Implications

The importance of having reliable water supply at low cost has immense social implications in modern communities. To deliver such service, water pipe assets have to be managed efficiently.

Originality/value

This paper addresses the probability of failure in a straightforward manner that the water utility can easily apply to its own data, both in its design and asset management.

Details

Built Environment Project and Asset Management, vol. 1 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 14 June 2022

Sheng Zhang, Peng Lan, Hai-Chao Li, Chen-Xi Tong and Daichao Sheng

Prediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of…

Abstract

Purpose

Prediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of partial differential equations (PDEs). Generally, there are challenges in solving these two issues using traditional numerical algorithms, while the conventional data-driven methods require massive data sets for training and exhibit negative generalization potential. This paper aims to employ the physics-informed neural networks (PINNs) for solving both the forward and inverse problems.

Design/methodology/approach

A typical consolidation problem with continuous drainage boundary conditions is firstly considered. The PINNs, analytical, and finite difference method (FDM) solutions are compared for the forward problem, and the estimation of the interface parameters involved in the problem is discussed for the inverse problem. Furthermore, the authors also explore the effects of hyperparameters and noisy data on the performance of forward and inverse problems, respectively. Finally, the PINNs method is applied to the more complex consolidation problems.

Findings

The overall results indicate the excellent performance of the PINNs method in solving consolidation problems with various drainage conditions. The PINNs can provide new ideas with a broad application prospect to solve PDEs in the field of geotechnical engineering, and also exhibit a certain degree of noise resistance for estimating the soil parameters.

Originality/value

This study presents the potential application of PINNs for the consolidation of soils. Such a machine learning algorithm helps to obtain remarkably accurate solutions and reliable parameter estimations with fewer and average-quality data, which is beneficial in engineering practice.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 March 2020

Chunhui Ma, Jie Yang, Lin Cheng and Li Ran

To improve the efficiency, accuracy and adaptivity of the parameter inversion analysis method of a rockfill dam, this study aims to establish an adaptive model based on a harmony…

Abstract

Purpose

To improve the efficiency, accuracy and adaptivity of the parameter inversion analysis method of a rockfill dam, this study aims to establish an adaptive model based on a harmony search algorithm (HS) and a mixed multi-output relevance vector machine (MMRVM).

Design/methodology/approach

By introducing the mixed kernel function, the MMRVM can accurately simulate the nonlinear relationship between the material parameters and dam settlement. Therefore, the finite element method with time consumption can be replaced by the MMRVM. Because of its excellent global search capability, the HS is used to optimize the kernel parameters of the MMRVM and the material parameters of a rockfill dam.

Findings

Because the parameters of the HS and the variation range of the MMRVM parameters are relatively fixed, the HS-MMRVM can imbue the inversion analysis with adaptivity; the number of observation points required and the robustness of the HS-MMRVM are analyzed. An application example involving a concrete-faced rockfill dam shows that the HS-MMRVM exhibits high accuracy and high speed in the parameter inversion analysis of static and creep constitutive models.

Practical implications

The applicability of the HS-MMRVM in hydraulic engineering is proved in this paper, which should further validate in inversion problems of other fields.

Originality/value

An adaptive inversion analysis model is established to avoid the parameters of traditional methods that need to be set by humans, which strongly affect the inversion analysis results. By introducing the mixed kernel function, the MMRVM can accurately simulate the nonlinear relationship between the material parameters and dam settlement. To reduce the data dimensions and verify the model’s robustness, the number of observation points required for inversion analysis and the acceptable degree of noise are determined. The confidence interval is built to monitor dam settlement and provide the foundation for dam monitoring and reservoir operation management.

Details

Engineering Computations, vol. 37 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2018

Alireza Ahangar Asr, Asaad Faramarzi and Akbar A. Javadi

This paper aims to develop a unified framework for modelling triaxial deviator stress – axial strain and volumetric strain – axial strain behaviour of granular soils with the…

Abstract

Purpose

This paper aims to develop a unified framework for modelling triaxial deviator stress – axial strain and volumetric strain – axial strain behaviour of granular soils with the ability to predict the entire stress paths, incrementally, point by point, in deviator stress versus axial strain and volumetric strain versus axial strain spaces using an evolutionary-based technique based on a comprehensive set of data directly measured from triaxial tests without pre-processing. In total, 177 triaxial test results acquired from literature were used to develop and validate the models. Models aimed to not only be capable of capturing and generalising the complicated behaviour of soils but also explicitly remain consistent with expert knowledge available for such behaviour.

Design/methodology/approach

Evolutionary polynomial regression (EPR) was used to develop models to predict stress – axial strain and volumetric strain – axial strain behaviour of granular soils. EPR integrates numerical and symbolic regression to perform EPR. The strategy uses polynomial structures to take advantage of favourable mathematical properties. EPR is a two-stage technique for constructing symbolic models. It initially implements evolutionary search for exponents of polynomial expressions using a genetic algorithm (GA) engine to find the best form of function structure; second, it performs a least squares regression to find adjustable parameters, for each combination of inputs (terms in the polynomial structure).

Findings

EPR-based models were capable of generalising the training to predict the behaviour of granular soils under conditions that have not been previously seen by EPR in the training stage. It was shown that the proposed EPR models outperformed ANN and provided closer predictions to the experimental data cases. The entire stress paths for the shearing behaviour of granular soils using developed model predictions were created with very good accuracy despite error accumulation. Parametric study results revealed the consistency of developed model predictions, considering roles of various contributing parameters, with physical and engineering understandings of the shearing behaviour of granular soils.

Originality/value

In this paper, an evolutionary-based data-mining method was implemented to develop a novel unified framework to model the complicated stress-strain behaviour of saturated granular soils. The proposed methodology overcomes the drawbacks of artificial neural network-based models with black box nature by developing accurate, explicit, structured and user-friendly polynomial models and enabling the expert user to obtain a clear understanding of the system.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 October 2019

Hui Chen and Donghai Liu

The purpose of this study is to develop a stochastic finite element method (FEM) to solve the calculation precision deficiency caused by spatial variability of dam compaction…

Abstract

Purpose

The purpose of this study is to develop a stochastic finite element method (FEM) to solve the calculation precision deficiency caused by spatial variability of dam compaction quality.

Design/methodology/approach

The Choleski decomposition method was applied to generate constraint random field of porosity. Large-scale laboratory triaxial tests were conducted to determine the quantitative relationship between the dam compaction quality and Duncan–Chang constitutive model parameters. Based on this developed relationship, the constraint random fields of the mechanical parameters were generated. The stochastic FEM could be conducted.

Findings

When the fully random field was simulated without the restriction effect of experimental data on test pits, the spatial variabilities of both displacement and stress results were all overestimated; however, when the stochastic FEM was performed disregarding the correlation between mechanical parameters, the variabilities of vertical displacement and stress results were underestimated and variation pattern for horizontal displacement also changed. In addition, the method could produce results that are closer to the actual situation.

Practical implications

Although only concrete-faced rockfill dam was tested in the numerical examples, the proposed method is applicable for arbitrary types of rockfill dams.

Originality/value

The value of this study is that the proposed method allowed for the spatial variability of constitutive model parameters and that the applicability was confirmed by the actual project.

Details

Engineering Computations, vol. 36 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 6 of 6