Search results

1 – 10 of 19
Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 6 November 2023

Rezia Molfino, Francesco E. Cepolina, Emanuela Cepolina, Elvezia Maria Cepolina and Sara Cepolina

The purpose of this study is to analyze the robot trends of the next generation.

1337

Abstract

Purpose

The purpose of this study is to analyze the robot trends of the next generation.

Design/methodology/approach

This paper is divided into two sections: the key modern technology on which Europe's robotics industry has built its foundation is described. Then, the next key megatrends were analyzed.

Findings

Artificial intelligence (AI) and robotics are technologies of major importance for the development of humanity. This time is mature for the evolution of industrial and service robots. The perception of robot use has changed from threading to aiding. The cost of mass production of technological devices is decreasing, while a rich set of enabling technologies is under development. Soft mechanisms, 5G and AI have enabled us to address a wide range of new problems. Ethics should guide human behavior in addressing this newly available powerful technology in the right direction.

Originality/value

The paper describes the impact of new technology, such as AI and soft robotics. The world of work must react quickly to these epochal changes to enjoy their full benefits.

Article
Publication date: 20 March 2024

Shufeng Tang, Yongsheng Kou, Guoqing Zhao, Huijie Zhang, Hong Chang, Xuewei Zhang and Yunhe Zou

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power…

Abstract

Purpose

The purpose of this paper is to design a climbing robot connected by a connecting rod mechanism to achieve multi-functional tasks such as obstacles crossing and climbing of power transmission towers.

Design/methodology/approach

A connecting rod type gripper has been designed to achieve stable grasping of angle steel. Before grasping, use coordination between structures to achieve stable docking and grasping. By using the alternating movements of two claws and the middle climbing mechanism, the climbing and obstacle crossing of the angle steel were achieved.

Findings

Through a simple linkage mechanism, a climbing robot has been designed, greatly reducing the overall mass of the robot. It can also carry a load of 1 kg, and the climbing mechanism can perform stable climbing. The maximum step distance of the climbing robot is 543 mm, which can achieve the crossing of angle steel obstacles.

Originality/value

A transmission tower climbing mechanism was proposed by analyzing the working environment. Through the locking ability of the screw nut, stable clamping of the angle steel is achieved, and a pitch mechanism is designed to adjust the posture of the hand claw.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 April 2024

Hesham Mohsen Hussein Omar, Mohamed Fawzy Aly Mohamed and Said Megahed

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper…

Abstract

Purpose

The purpose of this paper is to investigate the process of fused filament fabrication (FFF) of a compliant gripper (CG) using thermoplastic polyurethane (TPU) material. The paper studies the applicability of different CG designs and the efficiency of some design parameters.

Design/methodology/approach

After reviewing a number of different papers, two designs were selected for a number of exploratory experiments. Using design of experiments (DOE) techniques to identify important design parameters. Finally, the efficiency of the parts was investigated.

Findings

The research finds that a simpler design sacrifices some effectiveness in exchange for a remarkable decrease in production cost. Decreasing infill percentage of previous designs and 3D printing them, out of TPU, experimenting with different parameters yields functional products. Moreover, the paper identified some key parameters for further optimization attempts of such prototypes.

Research limitations/implications

The cost of conducting FFF experiments for TPU increases dramatically with product size, number of parameters studied and the number of experiments. Therefore, all three of these factors had to be kept at a minimum. Further confirmatory experiments encouraged.

Originality/value

This paper addresses an identified need to investigate applications of FFF and TPU in manufacturing functional efficient flexible mechanisms, grippers specifically. While most research focused on designing for increased performance, some research lacks discussion on design philosophy, as well as manufacturing issues. As the needs for flexible grippers vary from high-performance grippers to lower performance grippers created for specific functions/conditions, some effectiveness can be sacrificed to reduce cost, reduce complexity and improve applicability in different robotic assemblies and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 February 2024

Robert Bogue

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Abstract

Purpose

The purpose of this paper is to illustrate the growing role of robots in the logistics industry.

Design/methodology/approach

Following an introduction, which identifies key challenges facing the industry, this paper discusses robotic applications in warehouses, followed by sections covering transportation and delivery and conclusions.

Findings

The logistics industry faces a number of challenges that drive technological and operational changes. Robots are already playing a role within the warehouse sector and more complex applications have recently arisen from developments in artificial intelligence-enabled vision technology. In the transportation sector, autonomous trucks are being developed and trialled by leading manufacturers. Many major logistics companies are involved and limited services are underway. Last-mile delivery applications are growing rapidly, and trials, pilot schemes and commercial services are underway in Europe, the USA and the Far East. The Chinese market is particularly buoyant, and in 2019, a delivery robot was launched that operates on public roads, based on Level-4 autonomous driving technology. The drone delivery sector has been slower to develop, in part due to regulatory constraints, but services are now being operated by drone manufacturers, retailers and logistics providers.

Originality/value

This paper provides details of existing and future applications of robots in the logistics industry.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 January 2024

Chang Chen, Yuandong Liang, Jiten Sun, Chen Lin and Yehao Wen

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Abstract

Purpose

The purpose of this paper is to introduce a variable distance pneumatic gripper with embedded flexible sensors, which can effectively grasp fragile and flexible objects.

Design/methodology/approach

Based on the motion principle of the three-jaw chuck and the pneumatic “fast pneumatic network” (FPN), a variable distance pneumatic holder embedded with a flexible sensor is designed. A structural design plan and preparation process of a soft driver is proposed, using carbon nanotubes as filler in a polyurethane (PU) sponge. A flexible bending sensor based on carbon nanotube materials was produced. A static model of the soft driver cavity was established, and a bending simulation was performed. Based on the designed variable distance soft pneumatic gripper, a real-time monitoring and control system was developed. Combined with the developed pneumatic control system, gripping experiments on objects of different shapes and easily deformable and fragile objects were conducted.

Findings

In this paper, a variable-distance pneumatic gripper embedded with a flexible sensor was designed, and a control system for real-time monitoring and multi-terminal input was developed. Combined with the developed pneumatic control system, a measure was carried out to measure the relationship between the bending angle, output force and air pressure of the soft driver. Flexible bending sensor performance test. The gripper diameter and gripping weight were tested, and the maximum gripping diameter was determined to be 182 mm, the maximum gripping weight was approximately 900 g and the average measurement error of the bending sensor was 5.91%. Objects of different shapes and easily deformable and fragile objects were tested.

Originality/value

Based on the motion principle of the three-jaw chuck and the pneumatic FPN, a variable distance pneumatic gripper with embedded flexible sensors is proposed by using the method of layered and step-by-step preparation. The authors studied the gripper structure design, simulation analysis, prototype preparation, control system construction and experimental testing. The results show that the designed flexible pneumatic gripper with variable distance can grasp common objects.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 February 2024

Amruta Rout, Golak Bihari Mahanta, Bibhuti Bhusan Biswal, Renin Francy T., Sri Vardhan Raj and Deepak B.B.V.L.

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic…

91

Abstract

Purpose

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic situation like COVID-19. The purposed research work can help in better management of pandemic situations in rural areas as well as developing countries where medical facility is not easily available.

Design/methodology/approach

It becomes very difficult for the medical staff to have a continuous check on patient’s condition in terms of symptoms and critical parameters during pandemic situations. For dealing with these situations, a service mobile robot with multiple sensors for measuring patients bodily indicators has been proposed and the prototype for the same has been developed that can monitor and aid the patient using the robotic arm. The fuzzy controller has also been incorporated with the mobile robot through which decisions on patient monitoring can be taken automatically. Mamdani implication method has been utilized for formulating mathematical expression of M number of “if and then condition based rules” with defined input Xj (j = 1, 2, ………. s), and output yi. The inputs and output variables are formed by the membership functions µAij(xj) and µCi(yi) to execute the Fuzzy Inference System controller. Here, Aij and Ci are the developed fuzzy sets.

Findings

The fuzzy-based prediction model has been tested with the output of medicines for the initial 27 runs and was validated by the correlation of predicted and actual values. The correlation coefficient has been found to be 0.989 with a mean square error value of 0.000174, signifying a strong relationship between the predicted values and the actual values. The proposed research work can handle multiple tasks like online consulting, continuous patient condition monitoring in general wards and ICUs, telemedicine services, hospital waste disposal and providing service to patients at regular time intervals.

Originality/value

The novelty of the proposed research work lies in the integration of artificial intelligence techniques like fuzzy logic with the multi-sensor-based service robot for easy decision-making and continuous patient monitoring in hospitals in rural areas and to reduce the work stress on medical staff during pandemic situation.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 22 January 2024

Qiaojun Zhou, Ruilong Gao, Zenghong Ma, Gonghao Cao and Jianneng Chen

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment…

Abstract

Purpose

The purpose of this article is to solve the issue that apple-picking robots are easily interfered by branches or other apples near the target apple in an unstructured environment, leading to grasping failure and apple damage.

Design/methodology/approach

This study introduces the system units of the apple-picking robot prototype, proposes a method to determine the apple-picking direction via 3D point cloud data and optimizes the path planning method according to the calculated picking direction.

Findings

After the field experiments, the average deviation of the calculated picking direction from the desired angle was 11.81°, the apple picking success rate was 82% and the picking cycle was 11.1 s.

Originality/value

This paper describes a picking control method for an apple-picking robot that can improve the success and reliability of picking in an unstructured environment and provides a basis for automated and mechanized picking in the future.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 March 2024

Zhiqiang Wang

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line…

Abstract

Purpose

This paper aims to present a novel lightweight distribution grid operating robot system with focus on lightweight and multi-functionality, aiming for autonomous and live-line maintenance operations.

Design/methodology/approach

A ground-up redesign of the dual-arm robotic system with 12-DoF is applied for substantial weight reduction; a dual-mode operating control framework is proposed, with vision-guided autonomous operation embedded with real-time manual teleoperation controlling both manipulators simultaneously; a quick-swap tooling system is developed to conduct multi-functional operation tasks. A prototype robotic system is constructed and validated in a series of operational experiments in an emulated environment both indoors and outdoors.

Findings

The overall weight of the system is successfully brought down to under 150 kg, making it suitable for the majority of vehicle-mounted aerial work platforms, and it can be flexibly and quickly deployed in population dense areas with narrow streets. The system equips with two dexterous robotic manipulators and up to six interchangeable tools, and a vision system for AI-based autonomous operations. A quick-change tooling system ensures the robot to change tools on-the-go without human intervention.

Originality/value

The resulting dual-arm robotic live-line operation system robotic system could be compact and lightweight enough to be deployed on a wide range of available aerial working platforms with high mobility and efficiency. The robot could both conduct routine operation tasks fully autonomously without human direct operation and be manually operated when required. The quick-swap tooling system enables lightweight and durable interchangeability of multiple end-effector tools, enabling future expansion of operating capabilities across different tasks and operating scenarios.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 March 2024

Yonghua Huang, Tuanjie Li, Yuming Ning and Yan Zhang

This paper aims to solve the problem of the inability to apply learning methods for robot motion skills based on dynamic movement primitives (DMPs) in tasks with explicit…

Abstract

Purpose

This paper aims to solve the problem of the inability to apply learning methods for robot motion skills based on dynamic movement primitives (DMPs) in tasks with explicit environmental constraints, while ensuring the reliability of the robot system.

Design/methodology/approach

The authors propose a novel DMP that takes into account environmental constraints to enhance the generality of the robot motion skill learning method. First, based on the real-time state of the robot and environmental constraints, the task space is divided into different regions and different control strategies are used in each region. Second, to ensure the effectiveness of the generalized skills (trajectories), the control barrier function is extended to DMP to enforce constraint conditions. Finally, a skill modeling and learning algorithm flow is proposed that takes into account environmental constraints within DMPs.

Findings

By designing numerical simulation and prototype demonstration experiments to study skill learning and generalization under constrained environments. The experimental results demonstrate that the proposed method is capable of generating motion skills that satisfy environmental constraints. It ensures that robots remain in a safe position throughout the execution of generation skills, thereby avoiding any adverse impact on the surrounding environment.

Originality/value

This paper explores further applications of generalized motion skill learning methods on robots, enhancing the efficiency of robot operations in constrained environments, particularly in non-point-constrained environments. The improved methods are applicable to different types of robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 19