Search results

1 – 10 of over 1000
Article
Publication date: 1 June 1997

Jozef N. Marcincin and Juraj Smrcek

Presents both description and overview of the emerging field of biomechanical grippers and shows the prototype of biomechanical gripper called the Presov biomechanical robot

1007

Abstract

Presents both description and overview of the emerging field of biomechanical grippers and shows the prototype of biomechanical gripper called the Presov biomechanical robot gripper. Biomechanical robots and biomechanical grippers belong under biorobotics and bioengineering systems. Basic components of biorobotics include biomechanisms, biocontrol, biointelligence and biosensors. The Presov Biomechanical Robot Gripper is an electrically‐driven, multi‐fingered dextrous gripper, which has many features that conventional industrial robot grippers do not have. This gripper has been developed in the Department of Industrial Robotics of the Technical University in Presov, Slovak Republic.

Details

Industrial Robot: An International Journal, vol. 24 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 1988

C.T. Irwin

FLEXIBILITY has always been associated with robotic systems. However, once a robot has been integrated into an application, the robot is no longer flexible but becomes a part of…

Abstract

FLEXIBILITY has always been associated with robotic systems. However, once a robot has been integrated into an application, the robot is no longer flexible but becomes a part of the tooling. This loss of flexibility is attributed to the use of rigid, costly tooling, which includes end effector tooling.

Details

Assembly Automation, vol. 8 no. 2
Type: Research Article
ISSN: 0144-5154

Article
Publication date: 3 May 2010

Mahmoud Tavakoli, Lino Marques and Aníbal T. de Almeida

The purpose of this paper is to describe design and development of a pole climbing robot (PCR) for inspection of industrial size pipelines. Nowadays, non‐destructive testing (NDT…

1278

Abstract

Purpose

The purpose of this paper is to describe design and development of a pole climbing robot (PCR) for inspection of industrial size pipelines. Nowadays, non‐destructive testing (NDT) methods are performed by dextrous technicians across high‐level pipes, frequently carrying dangerous chemicals. This paper reports development of a PCR that can perform in situ manipulation for NDT tests.

Design/methodology/approach

Introduces a PCR including a novel four‐degrees of freedom climbing serial mechanism with the nearly optimal workspace and weight, unique V‐shaped grippers and a fast rotational mechanism around the pole axis. Simplicity, safety, minimum weight, and manipulability were concerned in the design process.

Findings

The developed prototype proved possibility of application of PCRs for NDT inspection on elevated structures. Design and development of PCRs which are able to pass bends and T‐junctions faces much more difficulties than those which should climb from a straight pole.

Practical implications

The robot is successfully tested on an industrial size structure (exterior diameter of 219 mm) with bends and T‐junctions.

Originality/value

Design and development of a novel pole climbing and manipulating robot for inspection of industrial size pipelines. The robot is able to pass bends and T‐junctions. The V‐shaped grippers offer many advantages including safety and tolerance to power failure. After grasping the structure, in case of power failure in any of the grippers' motors, the robot does not slip on the structure. The Z‐axis rotational mechanism provides fast navigation around the pole which is not possible with the traditional serial articulated arms.

Details

Industrial Robot: An International Journal, vol. 37 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2007

Anna Eisinberg, Arianna Menciassi, Paolo Dario, Joerg Seyfried, Ramon Estana and Heinz Woern

The aim of the research is to perform an accurate micromanipulation task, the assembly of a lens system, implementing safe procedures in a flexible microrobot‐based workstation…

Abstract

Purpose

The aim of the research is to perform an accurate micromanipulation task, the assembly of a lens system, implementing safe procedures in a flexible microrobot‐based workstation for micromanipulation.

Design/methodology/approach

The approach to the micromanipulation research issue consists in designing and building a micromanipulation station based on mobile microrobots, with 5 degrees of freedom and a size of a few cm3, capable of moving and manipulating by the use of tube‐shaped and multilayered piezo‐actuators. Controlled by visual and force/tactile sensor information, the micro‐robot is able to perform manipulation with a motion resolution down to 10 nm in a telemanipulated or semi‐automated mode, thus freeing human operators from the difficult task of handling minuscule objects directly. Equipped with purposely‐developed grippers, the robot can take over high‐precise grasping, transport, manipulation and positioning of mechanical or biological micro‐objects. A computer system using PC‐compatible hardware components ensures the robot operation in real‐time.

Findings

The robots and the grippers described in this paper are highly interesting tools. Even if each specific application may require specific modifications, the proposed solution is extremely versatile, due to the ability to manipulate with a very large stroke (being the size of the base the robot works on) with a very high motion resolution. These positive aspects do make the robots very suitable also for working in a scanning electron microscope, for wafer inspection in a laboratory, and so on.

Research limitations/implications

Future work will include modifications to the existing system in order to enhance the flexibility of the workstation: e.g. other robots and other tools with different characteristics will be designed and fabricated. Research efforts will be devoted in particular to further miniaturization of the actuators.

Practical implications

This workstation can be used as a platform for assembling novel prototypes, and as a test bench for testing new assembly procedures or new products, e.g. the lens assembly procedure described in this work, even if not suitable for mass production, was useful to assess the performance of the two‐lenses assembly system itself, compared to standard systems with just one lens.

Originality/value

The system proves that the development of mobile micro‐robots is a promising approach to realise very small and flexible tools useful for different applications. By means of its intuitive teleoperation mode, the system enables the user to work in the micro‐world; due to the force feedback the user is almost immersed into the micro‐world and gets a sense for the handled object.

Details

Assembly Automation, vol. 27 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 November 2002

N. Boubekri and Pinaki Chakraborty

The application of robots to industrial problems often requires grasping and manipulation of the work piece. The robot is able to perform a task adequately only when it is…

3228

Abstract

The application of robots to industrial problems often requires grasping and manipulation of the work piece. The robot is able to perform a task adequately only when it is assigned proper tooling and adequate methods of grasping and handling work pieces. The design of such a task requires an in‐depth knowledge of several interrelated subjects including: gripper design, force, position, stiffness and compliance control and grasp configurations. In this paper, we review the research finding on these subjects in order to present in a concise manner, which can be easily accessed by the designers of robot task, the information reported by the researchers, and identify based on the review, future research directions in these areas.

Details

Integrated Manufacturing Systems, vol. 13 no. 7
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 23 November 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging…

Abstract

Purpose

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging due to transient disturbance. The transient disturbance causes vibration in the flexible object during robotic manipulation and assembly. This is an important problem as the quick suppression of undesired vibrations reduces the cycle time and increases the efficiency of the assembly process. Thus, this study aims to propose a contactless robot vision-based real-time active vibration suppression approach to handle such a scenario.

Design/methodology/approach

A robot-assisted camera calibration method is developed to determine the extrinsic camera parameters with respect to the robot position. Thereafter, an innovative robot vision method is proposed to identify a flexible beam grasped by the robot gripper using a virtual marker and obtain the dimension, tip deflection as well as velocity of the same. To model the dynamic behaviour of the flexible beam, finite element method (FEM) is used. The measured dimensions, tip deflection and velocity of a flexible beam are fed to the FEM model to predict the maximum deflection. The difference between the maximum deflection and static deflection of the beam is used to compute the maximum error. Subsequently, the maximum error is used in the proposed predictive maximum error-based second-stage controller to send the control signal for vibration suppression. The control signal in form of trajectory is communicated to the industrial robot controller that accommodates various types of delays present in the system.

Findings

The effectiveness and robustness of the proposed controller have been validated using simulation and experimental implementation on an Asea Brown Boveri make IRB 1410 industrial robot with a standard low frame rate camera sensor. In this experiment, two metallic flexible beams of different dimensions with the same material properties have been considered. The robot vision method measures the dimension within an acceptable error limit i.e. ±3%. The controller can suppress vibration amplitude up to approximately 97% in an average time of 4.2 s and reduces the stability time up to approximately 93% while comparing with control and without control suppression time. The vibration suppression performance is also compared with the results of classical control method and some recent results available in literature.

Originality/value

The important contributions of the current work are the following: an innovative robot-assisted camera calibration method is proposed to determine the extrinsic camera parameters that eliminate the need for any reference such as a checkerboard, robotic assembly, vibration suppression, second-stage controller, camera calibration, flexible beam and robot vision; an approach for robot vision method is developed to identify the object using a virtual marker and measure its dimension grasped by the robot gripper accommodating perspective view; the developed robot vision-based controller works along with FEM model of the flexible beam to predict the tip position and helps in handling different dimensions and material types; an approach has been proposed to handle different types of delays that are part of implementation for effective suppression of vibration; proposed method uses a low frame rate and low-cost camera for the second-stage controller and the controller does not interfere with the internal controller of the industrial robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 May 2016

Robert Bogue

This paper aims to provide details of recent commercial and academic developments in flexible and soft grippers and considers their impact on emerging robotic markets.

1572

Abstract

Purpose

This paper aims to provide details of recent commercial and academic developments in flexible and soft grippers and considers their impact on emerging robotic markets.

Design/methodology/approach

Following an introduction, this paper first considers commercially available anthropomorphic robotic hands and soft grippers. It then discusses a selection of recent research activities and concludes with a brief discussion of the potential of these developments.

Findings

Anthropomorphic robotic hands, which seek to mimic the structure and capabilities of the human hand, together with a technologically diverse family of soft grippers have recently have been commercialised. Most are produced by companies which spun-out from academic establishments. A strong body of innovative research continues and involves a wide range of principles and technologies. These gripping technologies are expected to catalyse several new and emerging applications; the most important being in agile manufacturing, particularly when used with collaborative robots (cobots).

Originality/value

This paper provides details of recent developments and research into anthropomorphic hands and soft grippers and an insight into their applications.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 April 1982

Fan Y. Chen

The kinetic characteristics of grippers for industrial robots are studied. Determination of the input‐output force of grippers and calculations of gripping force for different…

Abstract

The kinetic characteristics of grippers for industrial robots are studied. Determination of the input‐output force of grippers and calculations of gripping force for different combinations of gripper's posture and workpiece orientation are included.

Details

Industrial Robot: An International Journal, vol. 9 no. 4
Type: Research Article
ISSN: 0143-991X

Article
Publication date: 1 April 2014

S.H. Masood and Hussain A. Khan

This paper presents an investigation on the development of different pattern placement strategies in robotic palletisation of box packages in the packaging industry with practical…

Abstract

Purpose

This paper presents an investigation on the development of different pattern placement strategies in robotic palletisation of box packages in the packaging industry with practical implementations for one, two, four and five block patterns with the aim of improving the operational efficiency in robotic palletisation.

Design/methodology/approach

The work involves considering the gripper design and maximum number of picks and various process parameters that affect the robotic implementation of pallet patterns and develops a methodology to form different patterns for a given pallet size.

Findings

The proposed methodology represents an efficient approach for pallet pattern implementation and results in reduced number of placements required for a given number of boxes per layer and reduced time for palletisation.

Originality/value

The paper introduces a novel technique for pallet loading problem (PLP) considering the physical aspects and restrictions encountered when using the robot and the gripper size to generate the pattern on the pallet. Traditional solutions of PLP do not consider these aspects in pattern placements.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 December 1995

G. Bright and S.L. Martegoutte

Looks at a research project to design a generic robotic gripper able toassemble a PC board with electronic components as efficiently as possible.Discusses the concept of grouping…

652

Abstract

Looks at a research project to design a generic robotic gripper able to assemble a PC board with electronic components as efficiently as possible. Discusses the concept of grouping electronic components into part families to allow for the design of a generic gripper to manipulate a component from each group. Outlines the design and operation of the gripper and the monitoring of its performance. Concludes that the concept of a low cost, low maintenance generic gripper compares favourably with specialized robotic end‐effectors.

Details

Assembly Automation, vol. 15 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 1000