Search results

1 – 10 of 516
Article
Publication date: 7 September 2015

Biao Mei, Weidong Zhu, Huiyue Dong and Yinglin Ke

This paper aims to propose a roadmap to control the robot–subassembly (R–S) coordination errors in movable robotic drilling. Fastener hole drilling for multi-station aircraft…

Abstract

Purpose

This paper aims to propose a roadmap to control the robot–subassembly (R–S) coordination errors in movable robotic drilling. Fastener hole drilling for multi-station aircraft assembly demands a robotic drilling system with expanded working volume and high positioning accuracy. However, coordination errors often exist between the robot and the subassembly to be drilled because of disturbances.

Design/methodology/approach

Mechanical pre-locating and vision-based robot base frame calibration are consecutively implemented to achieve in-process robot relocation after station transfer. Thus, coordination errors induced by robotic platform movements, inconsistent thermal effects, etc. are eliminated. The two-dimensional (2D) vision system is applied to measure the remainder of the R–S coordination errors, which is used to enhance the positioning accuracy of the robot. Accurate estimation of measured positioning errors is of great significance for evaluating the positioning accuracy. For well estimation of the positioning errors with small samples, a bootstrap approach is put forward.

Findings

A roadmap for R–S coordination error control using a 2D vision system, composed of in-process relocation, coordination error measurement and drilled position correction, is developed for the movable robotic drilling.

Practical implications

The proposed roadmap has been integrated into a drilling system for the assembly of flight control surfaces of a transport aircraft in Aviation Industry Corporation of China. The position accuracy of the drilled fastener holes is well ensured.

Originality/value

A complete roadmap for controlling coordination errors and improving positioning accuracy is proposed, which makes the high accuracy and efficiency available in movable robotic drilling for aircraft manufacturing.

Article
Publication date: 2 January 2019

Longfei Sun, Fengyong Liang and Lijin Fang

The purpose of this paper is to present a robotic arm that can offer better stiffness than traditional industrial robots for improving the quality of holes in robotic drilling

Abstract

Purpose

The purpose of this paper is to present a robotic arm that can offer better stiffness than traditional industrial robots for improving the quality of holes in robotic drilling process.

Design/methodology/approach

The paper introduces a five-degree of freedom (DOF) robot, which consists of a waist, a big arm, a small arm and a wrist. The robotic wrist is composed of two DOFs of pitching and tilting. A parallelogram frame is used for robotic arms, and the arm is driven by a linear electric cylinder in the diagonal direction. Double screw nuts with preload are used in the ball screw to remove the reverse backlash. In addition, dual-motor drive is applied for each DOF in the waist and the wrist to apply anti-backlash control method for eliminating gear backlash.

Findings

The proposed robotic arm has the potential for improving robot stiffness because of its truss structure. The robot can offer better stiffness than industrial robots, which is beneficial to improve the quality of robotic drilling holes.

Originality/value

This paper includes the design of a five-DOF robot for robotic drilling tasks, and the stiffness modeling of the robot is presented and verified by the experiment. The robotic system can be used instead of traditional industrial robots for improving the hole quality to a certain extent.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 March 2018

Hamza Bendemra, Toufik Al Khawli, Muddasar Anwar, Dewald Swart and Cesare Stefanini

The purpose of this paper is to present a novel force sensing jig for robot-assisted drilling used to drill holes for the fastening of floating nut plates in aircraft assembly.

Abstract

Purpose

The purpose of this paper is to present a novel force sensing jig for robot-assisted drilling used to drill holes for the fastening of floating nut plates in aircraft assembly.

Design/methodology/approach

The paper describes the drill jig, which consists of a parallel gripper, peg-in-hole pins and a back-plate with a recess where a Polydimethylsiloxane cone is placed on top of a force sensor. As the jig approaches the part, the force sensor registers the applied force until it reaches steady state, which indicates full contact between the jig and the part. The peg-in-hole pins then lock into a pre-existing hole, which provides a mechanical reference, and the support plate provides back support during drilling.

Findings

Positional accuracy and the repeatability of the system were successfully placed within the specification for accuracy and repeatability (0.1 mm tolerance and 0.2 mm tolerance, respectively).

Practical implications

The drill jig can be integrated into existing robot drilling solutions and modified for specific applications. The integration of the force sensor provides data for engineers to monitor and analyze forces during drilling. The design of the force sensing drill jig is particularly suited to industrial prototype robot drilling end-effectors for small and medium manufacturers.

Originality/value

The key novelties of this drilling jig are in the compact assembly, modular design and inclusion of force sensing and back support features.

Details

Industrial Robot: An International Journal, vol. 45 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 1999

Gürsel Alici

As the application range of present day industrial robots is expanded beyond pick‐and‐place operations, spray painting and spot welding, there is an increasing need for the…

1353

Abstract

As the application range of present day industrial robots is expanded beyond pick‐and‐place operations, spray painting and spot welding, there is an increasing need for the control of contact forces between the manipulator end point and environment. One important force control task is robotic drilling in hazardous environments. This paper addresses the analysis and characterisation of forcecontrolled robotic drilling, generation of a control strategy in the light of specifications obtained from the characterisation of this task, and the completion of a drilling operation with robot manipulator under contact force control. The experimental results demonstrate that a robot manipulator can perform drilling if enough contact thrust‐force is provided between a workpiece and drill, and is controlled properly. It follows that the analysis and characterisation of a task, especially investigation of the dynamic interactions between the tool carried by a manipulator and a workpiece, strategy generation, and controller design proceed simultaneously in order to develop a force control system for a specific task.

Details

Industrial Robot: An International Journal, vol. 26 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 June 2018

Toufik Al Khawli, Hamza Bendemra, Muddasar Anwar, Dewald Swart and Jorge Dias

This paper presents a method for extracting the geometric primitives of a circle in a three-dimensional space from a discrete point cloud data set obtained by a laser stripe…

Abstract

Purpose

This paper presents a method for extracting the geometric primitives of a circle in a three-dimensional space from a discrete point cloud data set obtained by a laser stripe sensor. This paper aims to first establish a reference frame for the robotic drilling process by detecting the position and orientation of a reference hole on structural parts in a pre-drilling step, and second, to perform quality inspection of the hole in a post-drilling step.

Design/methodology/approach

The method is divided into the following steps: a plane is initially fitted on the data by evaluating the principle component analysis using singular value decomposition; the data points or measurements are then rotated around an arbitrary axis using the Rodrigues’ rotation formula such that the normal direction of the estimated plane and the z-axis direction is parallel; the Delaunay triangulation is constructed on the point cloud and the confidence interval is estimated for segmenting the data set located at the circular boundary; and finally, a circular profile is fitted on the extracted set and transformed back to the original position.

Findings

The geometric estimation of the circle in three-dimensional space constitutes of the position of the center, the diameter and the orientation, which is represented by the normal vector of the plane that the circle lives in. The method is applied on both simulated data set with the addition of several noise levels and experimental data sets. The main purpose of both the tests is to quantify the accuracy of the estimated diameter. The results show good accuracy (mean relative error < 1 per cent) and high robustness to noise.

Research limitations/implications

The proposed method is applied here to estimate the geometric primitives of only one circle (the reference hole). If multiple circles are needed, an addition clustering procedure is required to cluster the segmented data into multiple data sets. Each data set represents a circle. Also, the method does not operate efficiently on a sparse data sets. Dense data are required to cover the hole (at least ten scans to cover the hole diameter).

Practical implications

Researchers and practitioners can integrate this method with several robotic manufacturing applications where high accuracy is required. The extracted position and orientation of the hole are used to minimize the positioning and alignment errors between the mounted tool tip and the workpiece.

Originality/value

The method introduces data analytics for estimating the geometric primitives in the robotic drilling application. The main advantage of the proposed method is to register the top surface of the workpiece with respect to robot base frame with a high accuracy. An accurate workpiece registration is extremely necessary in the lateral direction (identifying where to drill), as well as in the vertical direction (identifying how far to drill).

Details

Industrial Robot: An International Journal, vol. 45 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 January 2009

Jongwon Lee, Inwook Hwang, Keehoon Kim, Seungmoon Choi, Wan Kyun Chung and Young Soo Kim

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position…

Abstract

Purpose

The purpose of this paper is to present a surgical robot for spinal fusion and its control framework that provides higher operation accuracy, greater flexibility of robot position control, and improved ergonomics.

Design/methodology/approach

A human‐guided robot for the spinal fusion surgery has been developed with a dexterous end‐effector that is capable of high‐speed drilling for cortical layer gimleting and tele‐operated insertion of screws into the vertebrae. The end‐effector is position‐controlled by a five degrees‐of‐freedom robot body that has a kinematically closed structure to withstand strong reaction force occurring in the surgery. The robot also allows the surgeon to control cooperatively the position and orientation of the end‐effector in order to provide maximum flexibility in exploiting his or her expertise. Also incorporated for improved safety is a “drill‐by‐wire” mechanism wherein a screw is tele‐drilled by the surgeon in a mechanically decoupled master/slave system. Finally, a torque‐rendering algorithm that adds synthetic open‐loop high‐frequency components on feedback torque increases the realism of tele‐drilling in the screw‐by‐wire mechanism.

Findings

Experimental results indicated that this assistive robot for spinal fusion performs drilling tasks within the static regulation errors less than 0.1 μm for position control and less than 0.05° for orientation control. The users of the tele‐drilling reported subjectively that they experienced torque feedback similar to that of direct screw insertion.

Research limitations/implications

Although the robotic surgery system itself has been developed, integration with surgery planning and tracking systems is ongoing. Thus, the screw insertion accuracy of a whole surgery system with the assistive robot is to be investigated in the near future.

Originality/value

The paper arguably pioneers the dexterous end‐effector appropriately designed for spinal fusion, the cooperative robot position‐control algorithm, the screw‐by‐wire mechanism for indirect screw insertion, and the torque‐rendering algorithm for more realistic torque feedback. In particular, the system has the potential of circumventing the screw‐loosening problem, a common defect in the conventional surgeon‐operated or robot‐assisted spinal fusion surgery.

Details

Industrial Robot: An International Journal, vol. 36 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 April 2022

Yunfei Fan, Yilian Zhang, Huang Jie, Tang Yue, Qingzhen Bi and Yuhan Wang

This paper aims to propose a novel model and calibration method to improve the absolute positioning accuracy of a robotic drilling system with secondary encoders and additional…

Abstract

Purpose

This paper aims to propose a novel model and calibration method to improve the absolute positioning accuracy of a robotic drilling system with secondary encoders and additional axis.

Design/methodology/approach

The enhanced rigid-flexible coupling model is developed by considering both kinematic parameters and link flexibility. The kinematic errors of the robot and the additional axis are considered with a model containing 27 parameters. The elastic deformation errors of the robot under self-weight of links and end-effector are estimated with a flexible link model. For calibration, an effective comprehensive calibration method is developed by further considering the coordinate systems parameters of the drilling system and using a two-step process constrained Levenberg–Marquardt identification method.

Findings

Experiments are performed on the robotic drilling system that contains a KUKA KR500 R2830 industrial robot and an additional lifting axis with a laser tracker. The results show that the maximum error and mean error are reduced to 0.311 and 0.136 mm, respectively, which verify the effectiveness of the model and the calibration method.

Originality/value

A novel enhanced rigid-flexible coupling model and a practical comprehensive calibration method are proposed and verified. The experiments results indicate that the absolute positioning accuracy of the system in a large workspace is greatly improved, which is conducive to the application of industrial robots in the field of aerospace assembly.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 October 2018

Robert Bogue

This paper aims to provide details of the growing uses of robots by the aerospace industry.

1251

Abstract

Purpose

This paper aims to provide details of the growing uses of robots by the aerospace industry.

Design/methodology/approach

Following an introduction, this paper discusses and highlights the benefits of the following robotic applications and technologies: drilling and riveting; painting and stripping; composite structure manufacture; three-dimensional printing; and in-service engine inspection. Finally, brief conclusions are drawn.

Findings

Robots are increasingly being used by the aerospace sector in a diversity of applications. They confer a number of significant benefits including reduced costs, manpower and timescales, improved quality and novel manufacturing capabilities. The market is forecast for rapid growth as new applications emerge.

Originality/value

This paper illustrates the growing importance of robots in the aerospace sector.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 October 2018

Biao Mei, Weidong Zhu and Yinglin Ke

Aircraft assembly demands high position accuracy of drilled fastener holes. Automated drilling is a key technology to fulfill the requirement. The purpose of the paper is to…

296

Abstract

Purpose

Aircraft assembly demands high position accuracy of drilled fastener holes. Automated drilling is a key technology to fulfill the requirement. The purpose of the paper is to conduct positioning variation analysis and control for an automated drilling to achieve a high positioning accuracy.

Design/methodology/approach

The nominal and varied connective models of automated drilling are constructed for positioning variation analysis regarding automated drilling. The principle of a strategy for reducing positioning variation in drilling, which shortens the positioning variation chain with the aid of an industrial camera-based vision system, is explored. Moreover, other strategies for positioning variation control are developed based on mathematical analysis to further reduce the position errors of the drilled fastener holes.

Findings

The propagation and accumulation of an automated drilling system’s positioning variation are explored. The principle of reducing positioning variation in an automated drilling using a monocular vision system is discussed from the view of variation chain.

Practical implications

The strategies for reducing positioning variation, rooted in the constructed positioning variation models, have been applied to a machine-tool based automated drilling system. The system is developed for a wing assembly of an aircraft in the Aviation Industry Corporation of China.

Originality/value

Propagation, accumulation and control of positioning variation in an automated drilling are comprehensively explored. Based on this, the positioning accuracy in an automated drilling is controlled below 0.13 mm, which can meet the requirement for the assembly of the aircraft.

Article
Publication date: 17 April 2019

Dongmin Li, Yuanzhi Zhao, Shiming Zhu and Hengxuan Luan

This paper aims to propose a conceptual scale model of mobile drilling robot according to the actual drilling rig and working conditions to improve the safety and automation of…

Abstract

Purpose

This paper aims to propose a conceptual scale model of mobile drilling robot according to the actual drilling rig and working conditions to improve the safety and automation of drilling in tunnel construction and coal mining applications.

Design/methodology/approach

A couple of pinion and rack serves as the support mechanism driven by a motor with low rotation speed at high power, and these components are assembled in the center of the robot to tightly fasten the whole body together. The drilling rod and the sleeve are connected through a hole with screw thread so that the rod feeds and rotates simultaneously along with the sleeve. The robot model is automatically controlled by a single-chip microcomputer, and the anti-disturbance circuit is designed as well. A five-step rule obstacle avoidance method is proposed to ensure safe and reliable movement.

Findings

The results of simulation experiments on drilling operation do indicate that the mechanism and control method are feasible and effective.

Research limitations/implications

The robot is nearly complete but indeed remains only an experimental machine.

Originality/value

The design of the mechanism structure for the conceptual robot is novelty. The method of five-step rule obstacle avoidance can improve reliability of obstacle avoidance according to the experimental results, which can meet the requirements of complex working conditions underground coal mine.

Details

Assembly Automation, vol. 40 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of 516