Search results

1 – 10 of over 3000
Article
Publication date: 23 November 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging…

Abstract

Purpose

Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging due to transient disturbance. The transient disturbance causes vibration in the flexible object during robotic manipulation and assembly. This is an important problem as the quick suppression of undesired vibrations reduces the cycle time and increases the efficiency of the assembly process. Thus, this study aims to propose a contactless robot vision-based real-time active vibration suppression approach to handle such a scenario.

Design/methodology/approach

A robot-assisted camera calibration method is developed to determine the extrinsic camera parameters with respect to the robot position. Thereafter, an innovative robot vision method is proposed to identify a flexible beam grasped by the robot gripper using a virtual marker and obtain the dimension, tip deflection as well as velocity of the same. To model the dynamic behaviour of the flexible beam, finite element method (FEM) is used. The measured dimensions, tip deflection and velocity of a flexible beam are fed to the FEM model to predict the maximum deflection. The difference between the maximum deflection and static deflection of the beam is used to compute the maximum error. Subsequently, the maximum error is used in the proposed predictive maximum error-based second-stage controller to send the control signal for vibration suppression. The control signal in form of trajectory is communicated to the industrial robot controller that accommodates various types of delays present in the system.

Findings

The effectiveness and robustness of the proposed controller have been validated using simulation and experimental implementation on an Asea Brown Boveri make IRB 1410 industrial robot with a standard low frame rate camera sensor. In this experiment, two metallic flexible beams of different dimensions with the same material properties have been considered. The robot vision method measures the dimension within an acceptable error limit i.e. ±3%. The controller can suppress vibration amplitude up to approximately 97% in an average time of 4.2 s and reduces the stability time up to approximately 93% while comparing with control and without control suppression time. The vibration suppression performance is also compared with the results of classical control method and some recent results available in literature.

Originality/value

The important contributions of the current work are the following: an innovative robot-assisted camera calibration method is proposed to determine the extrinsic camera parameters that eliminate the need for any reference such as a checkerboard, robotic assembly, vibration suppression, second-stage controller, camera calibration, flexible beam and robot vision; an approach for robot vision method is developed to identify the object using a virtual marker and measure its dimension grasped by the robot gripper accommodating perspective view; the developed robot vision-based controller works along with FEM model of the flexible beam to predict the tip position and helps in handling different dimensions and material types; an approach has been proposed to handle different types of delays that are part of implementation for effective suppression of vibration; proposed method uses a low frame rate and low-cost camera for the second-stage controller and the controller does not interfere with the internal controller of the industrial robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 February 2022

Chetan Jalendra, B.K. Rout and Amol Marathe

Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant…

Abstract

Purpose

Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant gripper is used for assembly tasks such as peg-in-hole assembly. A compliant mechanism in the gripper introduces flexibility that may cause oscillation in the grasped object. Such a flexible gripper–object system can be considered as an under-actuated object held by the gripper and the oscillations can be attributed to transient disturbance of the robot itself. The commercially available robots do not have a control mechanism to reduce such induced vibration. Thus, this paper aims to propose a contactless vision-based approach for vibration suppression which uses a predictive vibrational amplitude error-based second-stage controller.

Design/methodology/approach

The proposed predictive vibrational amplitude error-based second-stage controller is a real-time vibration control strategy that uses predicted error to estimate the second-stage controller output. Based on controller output, input trajectories were estimated for the internal controller of the robot. The control strategy efficiently handles the system delay to execute the control input trajectories when the oscillating object is at an extreme position.

Findings

The present controller works along with the internal controller of the robot without any interruption to suppress the residual vibration of the object. To demonstrate the robustness of the proposed controller, experimental implementation on Asea Brown Boveri make industrial robot (IRB) 1410 robot with a low frame rate camera has been carried out. In this experiment, two objects have been considered that have a low (<2.38 Hz) and high (>2.38 Hz) natural frequency. The proposed controller can suppress 95% of vibration amplitude in less than 3 s and reduce the stability time by 90% for a peg-in-hole assembly task.

Originality/value

The present vibration control strategy uses a camera with a low frame rate (25 fps) and the delays are handled intelligently to favour suppression of high-frequency vibration. The mathematical model and the second-stage controller implemented suppress vibration without modifying the robot dynamical model and the internal controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 December 2017

Ali Alouache and Qinghe Wu

The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive…

Abstract

Purpose

The aim of this paper is to propose a robust robot fuzzy logic proportional-derivative (PD) controller for trajectory tracking of autonomous nonholonomic differential drive wheeled mobile robot (WMR) of the type Quanser Qbot.

Design/methodology/approach

Fuzzy robot control approach is used for developing a robust fuzzy PD controller for trajectory tracking of a nonholonomic differential drive WMR. The linear/angular velocity of the differential drive mobile robot are formulated such that the tracking errors between the robot’s trajectory and the reference path converge asymptotically to zero. Here, a new controller zero-order Takagy–Sugeno trajectory tracking (ZTS-TT) controller is deduced for robot’s speed regulation based on the fuzzy PD controller. The WMR used for the experimental implementation is Quanser Qbot which has two differential drive wheels; therefore, the right/left wheel velocity of the differential wheels of the robot are worked out using inverse kinematics model. The controller is implemented using MATLAB Simulink with QUARC framework, downloaded and compiled into executable (.exe) on the robot based on the WIFI TCP/IP connection.

Findings

Compared to other fuzzy proportional-integral-derivative (PID) controllers, the proposed fuzzy PD controller was found to be robust, stable and consuming less resources on the robot. The comparative results of the proposed ZTS-TT controller and the conventional PD controller demonstrated clearly that the proposed ZTS-TT controller provides better tracking performances, flexibility, robustness and stability for the WMR.

Practical implications

The proposed fuzzy PD controller can be improved using hybrid techniques. The proposed approach can be developed for obstacle detection and collision avoidance in combination with trajectory tracking for use in environments with obstacles.

Originality/value

A robust fuzzy logic PD is developed and its performances are compared to the existing fuzzy PID controller. A ZTS-TT controller is deduced for trajectory tracking of an autonomous nonholonomic differential drive mobile robot (i.e. Quanser Qbot).

Details

Industrial Robot: An International Journal, vol. 45 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2018

Tianyu Ren, Yunfei Dong, Dan Wu and Ken Chen

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque…

Abstract

Purpose

The purpose of this paper is to present a simple yet effective force control scheme for collaborative robots by addressing the problem of disturbance rejection in joint torque: inherent actuator flexibility and nonlinear friction.

Design/methodology/approach

In this paper, a joint torque controller with an extended state observer is used to decouple the joint actuators from the multi-rigid-body system of a constrained robot and compensate the motor friction. Moreover, to realize robot force control, the authors embed this controller into the impedance control framework.

Findings

Results have been given in simulations and experiments in which the proposed joint torque controller with an extended state observer can effectively estimate and compensate the total disturbance. The overall control framework is analytically proved to be stable, and further it is validated in experiments with a robot testbed.

Practical implications

With the proposed robot force controller, the robot is able to change its stiffness in real time and therefore take variable tasks without any accessories, such as the RCC or 6-DOF F/T sensor. In addition, programing by demonstration can be realized easily within the proposed framework, which makes the robot accessible to unprofessional users.

Originality/value

The main contribution of the presented work is the design of a model-free robot force controller with the ability to reject torque disturbances from robot-actuator coupling effect and motor friction, applicable for both constrained and unconstrained environments. Simulation and experiment results from a 7-DOF robot are given to show the effectiveness and robustness of the proposed controller.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 August 2018

Li Pan, Guanjun Bao, Fang Xu and Libin Zhang

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external…

Abstract

Purpose

This paper aims to present an adaptive robust sliding mode tracking controller for a 6 degree-of-freedom industrial assembly robot with parametric uncertainties and external disturbances. The controller is used to achieve both stringent trajectory tracking, accurate parameter estimations and robustness against external disturbances.

Design/methodology/approach

The controller is designed based on the combination of sliding mode control, adaptive and robust controls and hence has good adaptation and robustness abilities to parametric variations and uncertainties. The unknown parameter estimates are updated online based on a discontinuous projection adaptation law. The robotic dynamics is first formulated in both joint spaces and workspace of the robot’s end-effector. Then, the design procedure of the adaptive robust sliding mode tracking controller and the parameter update law is detailed.

Findings

Comparative tests are also conducted to verify the effectiveness of the proposed controller, which show that the proposed controller achieves significantly better dynamic trajectory tracking performances as compared with conventional proportional derivative controller and sliding mode controller under the same conditions.

Originality/value

This is a new innovation for industrial assembly robot to improve assembly automation.

Article
Publication date: 29 September 2023

Yue Qiao, Wang Wei, Yunxiang Li, Shengzui Xu, Lang Wei, Xu Hao and Re Xia

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the…

146

Abstract

Purpose

The purpose of this paper is to introduce a motion control method for WFF-AmphiRobot, which can effectively realize the flexible motion of the robot on land, underwater and in the transition zone between land and water.

Design/methodology/approach

Based on the dynamics model, the authors selected the appropriate state variables to construct the state space model of the robot and estimated the feedback state of the robot through the maximum a posteriori probability estimation. The nonlinear predictive model controller of the robot is constructed by local linearization of the model to perform closed-loop control on the overall motion of the robot. For the control problem of the terminal trajectory, using the neural rhythmic movement theory in bionics to construct a robot central pattern generator (CPG) for real-time generation of terminal trajectory.

Findings

In this paper, the motion state of WFF-AmphiRobot is estimated, and a model-based overall motion controller for the robot and an end-effector controller based on neural rhythm control are constructed. The effectiveness of the controller and motion control algorithm is verified by simulation and physical prototype motion experiments on land and underwater, and the robot can ideally complete the desired behavior.

Originality/value

The paper designed a controller for WFF-AmphiRobot. First, when constructing the robot state estimator in this paper, the robot dynamics model is introduced as the a priori estimation model, and the error compensation of the a priori model is performed by the method of maximum a posteriori probability estimation, which improves the accuracy of the state estimator. Second, for the underwater oscillation motion characteristics of the flipper, the Hopf oscillator is used as the basis, and the flipper fluctuation equation is modified and improved by the CPG signal is adapted to the flipper oscillation demand. The controller effectively controls the position error and heading angle error within the desired range during the movement of the WFF-AmphiRobot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 4 December 2020

Fangli Mou and Dan Wu

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further…

1142

Abstract

Purpose

In recent years, owing to the rapidly increasing labor costs, the demand for robots in daily services and industrial operations has been increased significantly. For further applications and human–robot interaction in an unstructured open environment, fast and accurate tracking and strong disturbance rejection ability are required. However, utilizing a conventional controller can make it difficult for the robot to meet these demands, and when a robot is required to perform at a high-speed and large range of motion, conventional controllers may not perform effectively or even lead to the instability.

Design/methodology/approach

The main idea is to develop the control law by combining the SMC feedback with the ADRC control architecture to improve the robustness and control quality of a conventional SMC controller. The problem is formulated and solved in the framework of ADRC. For better estimation and control performance, a generalized proportional integral observer (GPIO) technique is employed to estimate and compensate for unmodeled dynamics and other unknown time-varying disturbances. And benefiting from the usage of GPIO, a new SMC law can be designed by synthesizing the estimation and its history.

Findings

The employed methodology introduced a significant improvement in handling the uncertainties of the system parameters without compromising the nominal system control quality and intuitiveness of the conventional ADRC design. First, the proposed method combines the advantages of the ADRC and SMC method, which achieved the best tracking performance among these controllers. Second, the proposed controller is sufficiently robust to various disturbances and results in smaller tracking errors. Third, the proposed control method is insensitive to control parameters which indicates a good application potential.

Originality/value

High-performance robot tracking control is the basis for further robot applications in open environments and human–robot interfaces, which require high tracking accuracy and strong disturbance rejection. However, both the varied dynamics of the system and rapidly changing nonlinear coupling characteristic significantly increase the control difficulty. The proposed method gives a new replacement of PID controller in robot systems, which does not require an accurate dynamic system model, is insensitive to control parameters and can perform promisingly for response rapidity and steady-state accuracy, as well as in the presence of strong unknown disturbances.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 December 1996

Laurent Berthod

A new efficient controller has been designed for the Aria‐Delta parallel robot family to help increase their capabilities and reduce the required resources and development time…

222

Abstract

A new efficient controller has been designed for the Aria‐Delta parallel robot family to help increase their capabilities and reduce the required resources and development time. Introduces briefly the robot structure and characteristics, then the controller itself, the hardware components and software modules, its new tools and its overall advantages and performance.

Details

Industrial Robot: An International Journal, vol. 23 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2019

Alireza Abbasi Moshaii, Majid Mohammadi Moghaddam and Vahid Dehghan Niestanak

The purpose of this paper is to introduce a new design for a finger and wrist rehabilitation robot. Furthermore, a fuzzy sliding mode controller has been designed to control the…

Abstract

Purpose

The purpose of this paper is to introduce a new design for a finger and wrist rehabilitation robot. Furthermore, a fuzzy sliding mode controller has been designed to control the system.

Design/methodology/approach

Following an introduction regarding the hand rehabilitation, this paper discusses the conceptual and detailed design of a novel wrist and finger rehabilitation robot. The robot provides the possibility of rehabilitating each phalanx individually which is very important in the finger rehabilitation process. Moreover, due to the model uncertainties, disturbances and chattering in the system, a fuzzy sliding mode controller design method is proposed for the robot.

Findings

With the novel design for moving the DOFs of the system, the rehabilitation for the wrist and all phalanges of fingers is done with only two actuators which are combined in one device. These features make the system a good choice for home rehabilitation. To control the robot, a fuzzy sliding mode controller has been designed for the system. The fuzzy controller does not affect the coefficient of the sliding mode controller and uses the overall error of the system to make a control signal. Thus, the dependence of the controller to the model decreases and the system is more robust. The stability of the system is proved by the Lyapunov theorem.

Originality/value

The paper provides a novel design of a hand rehabilitation robot and a controller which is used to compensate the effects of the uncertain parameters and chattering phenomenon.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 March 2022

Chengguo Liu, Ye He, Xiaoan Chen and Hongli Cao

As more and more robots are used in industry, it is necessary for robots to interact with high dynamic environments. For this reason, the purpose of this research is to form an…

Abstract

Purpose

As more and more robots are used in industry, it is necessary for robots to interact with high dynamic environments. For this reason, the purpose of this research is to form an excellent force controller by considering the transient contact force response, overshoot and steady-state force-tracking accuracy.

Design/methodology/approach

Combining the active disturbance rejection control (ADRC) and the adaptive fuzzy PD controller, an enhanced admittance force-tracking controller framework and a well-designed control scheme are proposed. Tracking differentiator balances the contradiction between inertia and jump control signal of the control object. Kalman filter and extended state observer are introduced to obtain purer feedback force signal and uncertainty compensation. Adaptive fuzzy PD controller is introduced to account for transient and steady state performance of the system.

Findings

The proposed controller has achieved successful results through simulation and actual test of 6-axis robot with minimum error.

Practical implications

The controller is simple and practical in real industrial scenarios, where force control by robots is required.

Originality/value

In this research, a new practical force control algorithm is proposed to guarantee the performance of the force controller for robots interacting with high dynamic environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 3000