Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 3 October 2016

Martin Kadlec, Robin Hron and Liberata Guadagno

The purpose of this paper is to present the mechanical and morphological characterization of new multifunctional carbon fibre-reinforced composites (CFRCs) that are able…

Abstract

Purpose

The purpose of this paper is to present the mechanical and morphological characterization of new multifunctional carbon fibre-reinforced composites (CFRCs) that are able to overcome two of the main drawbacks of aeronautical composite materials: reduced electrical conductivity and poor flame resistance. Multiwall carbon nanotubes and glycidyl POSS (GPOSS) were used to simultaneously enhance electrical conductivity and flame resistance. The effect of these two combined components on the mechanical and morphological properties of the manufactured CFRCs was analysed.

Design/methodology/approach

This paper describes the mechanical test results obtained for interlaminar shear strength, three-point bending, and tensile and fracture toughness in mode I tests. Carbon fibre-reinforced epoxy resin plates were manufactured in two series with blank resin and CNT+flame retardant GPOSS-enhanced resin.

Findings

The mechanical properties were decreased by no more than 10 per cent by combined influence of CNTs and GPOSS. Agglomerates of CNTs were observed using scanning electron microscopy. The agglomerates were large enough to be visible to the naked eye as black spots on the delaminated fracture surface. The decrease of the mechanical properties could be caused by these agglomerates or by a changed fibre volume content that was affected by the difficult infusion procedure due to high resin viscosity.

Originality/value

If we consider the benefit of CNTs as a nanofiller to increase electrical conductivity and the GPOSS as a component to increase the flame resistance of the resin, the decrease of strength seems to be insignificant.

Details

International Journal of Structural Integrity, vol. 7 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

To view the access options for this content please click here
Article
Publication date: 2 February 2015

Martin Kadlec, Robin Hron and Timo Grieser

T-sections of carbon fibre-reinforced composites are prone to delamination because they lack reinforcement through their thicknesses. The purpose of this paper is to…

Abstract

Purpose

T-sections of carbon fibre-reinforced composites are prone to delamination because they lack reinforcement through their thicknesses. The purpose of this paper is to present the structural response of cost-effective laminated T-sections when subjected to various types of loads and impacts.

Design/methodology/approach

The core of the automated manufactured beams is analysed. Pull-off, flange tension, and flange bending were tested for specimens extracted from an I-beam. The failure processes for all of the specimens were investigated in detail, leading to the statistical evaluation of the failure modes.

Findings

A correlation is apparent between the impact damage energy and certain fracture patterns. These results can be used to assess damage tolerance when designing stiffeners, beams, and various complex structures. The increase in strength by 25 per cent was measured for the advanced stitching located in the web section for the flange tension test.

Originality/value

The resistance displayed by the T-sections toward impact damage was studied experimentally, as the literature describing this topic is limited. The prevalence of one fracture mode for higher impact energies shows a possible advantage of the cost-effective preforms for the damage tolerant philosophy.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 2 of 2