Search results

1 – 5 of 5
To view the access options for this content please click here
Article
Publication date: 20 June 2008

Rinaldo Michelini and Roberto Razzoli

The purpose of this paper is to consider surgical robotics, with a focus on technology and design issues for remote‐mode operation assistance. The investigation leads to…

Abstract

Purpose

The purpose of this paper is to consider surgical robotics, with a focus on technology and design issues for remote‐mode operation assistance. The investigation leads to the definition of the technical characteristics of a co‐robotic positioning device (CRPD), to be developed in support of a split‐duty approach to planning. The expected characteristics and advantages are outlined, including the operation potential of special‐purpose devices (e.g. an automatic changer for surgical tools) and of scope‐driven enhancers (e.g. the exploration of the intervention theatre).

Design/methodology/approach

The paper addresses example developments based on projects performed with the co‐operation of other robot laboratories in Munich and Paris. The CRPD concept is applied in relation to the DLR KineMedic® arm (developed by the Munich laboratory), and with the LRP prototype mini‐arm (built by the Paris laboratory).

Findings

Minimally‐invasive surgery deserves increasing attention to reduce post‐operative hospital stays and to reduce complications. This leads to new trends in robotics, to facilitate safe, fast and accurate remote manipulation, and integrated computer‐aided implements. The features of the example CRPD design are summarised for the two cases.

Practical implications

The overall comments consider minimally‐invasive robotic surgery as a given intervention practice in the near future, and the split‐duty approach, supported by the CRPD technology, as a valuable aid for human‐robot co‐operation, according to the “best‐of‐skills” idea, supporting intervention under the surgeon's control.

Originality/value

This investigation shows new results aimed at expanding the operation versatility of robotics with integrated intelligence, to enhance scope‐driven alternatives and out‐of‐reach handling with improved dexterity and safe autonomic processing.

Details

Industrial Robot: An International Journal, vol. 35 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2005

Francesco Becchi, Rezia M. Molfino and Roberto P. Razzoli

To set‐up the study of an unmanned system for refuelling of vehicles, with attention to VOCs recovery.

Abstract

Purpose

To set‐up the study of an unmanned system for refuelling of vehicles, with attention to VOCs recovery.

Design/methodology/approach

Presents the architecture of a robotic arm for refuelling. Special attention was allocated to the safety characteristics of the automatic refuelling station assuring the highest protection of people and their safeguard against accidents, preventing any dangerous response of the robotic arm in all the predictable conditions. A concurrent engineering methodology jointly with the life‐cycle approach was adopted for the study and evaluation of the equipment.

Findings

Finds that a six DoF arm with a tubular architecture with relocated actuation equipped with a specifically designed filler satisfying stage II rules is suitable to perform the task of safe refuelling of vehicles.

Research limitations/implications

Provides hints to design refuelling stations, also for fluids of the future (e.g. hydrogen).

Practical implications

This robot is a low cost and efficient solution for replacing humans in petrol pump stations, while preserving environmental health. Refuelling will be comfortable and safe even in adverse climate conditions or for dangerous fuels (e.g. hydrogen).

Originality/value

Introduces a robotic arm made with tubes so that cables, pipes and VOCs run inside it and a filler granting easy mating with the cap and VOCs collection.

Details

Industrial Robot: An International Journal, vol. 32 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 6 March 2009

Manjula Hemapala, Vittorio Belotti, Rinaldo Michelini and Roberto Razzoli

Humanitarian demining is addressed as an engineering‐driven duty, aiming at optimal price/effectiveness figures, joining low‐cost robotics and flexible automation. The…

Abstract

Purpose

Humanitarian demining is addressed as an engineering‐driven duty, aiming at optimal price/effectiveness figures, joining low‐cost robotics and flexible automation. The mine sweeping is highly dangerous task, and safety is sought by automatic rigs, with remote steering and control. The small price is achieved with resort to locally available equipment, technology and know‐how.

Design/methodology/approach

The robotic solutions are split at three levels: the mobility enabler, exploiting standard agricultural machinery; the demining outfits, specialising cheap end‐effectors; the robot path planner, exploring reliable remote govern options. The approach aims at the pace‐wise deployment of consistent rigs with assessed productivity and tiny investment.

Findings

The paper explores basic ideas to modify common agricultural machines, placing in front proper effectors and specifying the guidelines needed to choose both carriers and suitable demining tools. The remote command logic of the suggested demining strategy is then outlined, specifying the communication and instrumentation for the case study. Finally, the warning/emergency occurrences management is described.

Practical implications

The ensuing robotic equipment joins the remote‐command abilities, with safe and reliable management of dangerous tasks and emergency healing, to the technological appropriateness (shared know‐how and commitment) and the price tag fitness (on‐place device availability). The final set‐up grants dramatic up‐grading, as compared with the current demining practice.

Originality/value

Unmanned mine‐clearing is presently a sophisticated accomplishment of the industrialised countries' armies. By the prospected methods/fixtures, the technical/economic feasibility of the practice is shown to be practicable in third‐world countries.

Details

Industrial Robot: An International Journal, vol. 36 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 18 April 2008

Gabriella Acaccia, Luca Bruzzone and Roberto Razzoli

The aim of this paper is the development of a modular robotic system for generic industrial applications, including assembly.

Downloads
1551

Abstract

Purpose

The aim of this paper is the development of a modular robotic system for generic industrial applications, including assembly.

Design/methodology/approach

A library of robotic modules has been designed; they are divided into two categories: link modules, not actuated, and joint modules, actuated; the library is characterized by a relatively low number of elements, but allows the assembly of a wide variety of medium‐size serial robots.

Findings

The prototypes of two joint modules (a revolute joint module and a wrist module) and of some link modules have been realized. The behaviour of several serial robots composed of the designed modules has been assessed by multibody simulation. The results confirm the goodness of the proposed approach.

Research limitations/implications

The two prototype modules are under test in combination with simplified modules. The further steps of the research programme will be the completion of the prototype library, and an experimental campaign on different serial chains.

Practical implications

Modularity allows one to achieve a great variety of robots starting from a small set of modules, in order to match different operative requirements. Moreover, modularity dramatically reduces the time‐to‐repair of the robot and consequently improves its overall availability; this is a fundamental feature for modern industrial enterprises aiming at maximizing the resources availability.

Originality/value

The proposed mechanical design of the revolute joint modules, based on a harmonic drive that connects two bodies in relative rotational motion, is compact and robust. Modularity is not restricted to mechanics: a distributed control system is adopted to make the reconfiguration of the robot easier and quicker.

Details

Assembly Automation, vol. 28 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 3 May 2011

Giuseppe Quaglia, Luca Bruzzone, Giorgio Bozzini, Riccardo Oderio and Roberto P. Razzoli

The purpose of this paper is to describe the development of a robot for surveillance able to move in structured and unstructured environments and able to overcome…

Abstract

Purpose

The purpose of this paper is to describe the development of a robot for surveillance able to move in structured and unstructured environments and able to overcome obstacles with high energetic efficiency.

Design/methodology/approach

The proposed Epi.q‐TG hybrid robot combines wheeled and legged locomotion. It is equipped with four three‐wheeled locomotion units; traction is generated by the two forecarriage units, while the two rear ones have same geometry but are idle. Each front unit is actuated by a single motor with the interposition of an epicyclical gearing, accurately designed in order to suitably switch between wheeled and legged motion. The robot changes locomotion mode from rolling on wheels (advancing mode) to stepping on legs (automatic climbing mode) according to local friction and dynamic conditions.

Findings

The experimental results confirm the design objectives. In advancing mode, the robot behaves like a four‐wheeled vehicle, with high speed and energetic efficiency. In automatic climbing mode, the robot can walk on uneven and soft terrains and overcome steps with remarkable height with respect to its dimensions (up to 84 per cent of the locomotion unit height).

Practical implications

Besides surveillance, Epi.q‐TG can be successfully used in many tasks in which it is useful to combine the advantages of wheeled and legged locomotion, e.g. unmanned inspection of nuclear and chemical sites, minesweeping, and intervention in disaster zones.

Originality/value

The core of the project is the epicyclical mechanism of the locomotion unit, which switches between advancing mode and automatic climbing mode without control action. This solution limits the control and actuation complexity and consequently the robot cost, widening the range of possible applications.

Details

Industrial Robot: An International Journal, vol. 38 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 5 of 5