Search results

1 – 10 of 26
Article
Publication date: 3 April 2019

Hong Guo, Shuai Yang, Shaolin Zhang and Zebin Zhang

The purpose of this paper is to study the influence of lubricant temperature-viscosity on the performance for a hydrodynamic journal floating ring bearing (FRB), including…

Abstract

Purpose

The purpose of this paper is to study the influence of lubricant temperature-viscosity on the performance for a hydrodynamic journal floating ring bearing (FRB), including ring-journal speed ratio and stability.

Design/methodology/approach

The finite difference method was used to solve computational models of Reynolds equation, energy equation and temperature–viscosity equation. Dynamic coefficients were obtained based on the floating ring balance. The dynamic model of journal and floating ring was established to deduce the stability criterion of single mass symmetrical rigid FRB rotor system by the Routh–Hurwitz method. The outlet temperature and ring-journal speed ratio under different journal speeds were compared to experimental data.

Findings

The temperature–viscosity effect reduces the ring-journal speed ratio and stability of rotor system. According to theoretical and experimental results, the outlet temperature rises and ring-journal ratio drops when the journal speed rises.

Originality/value

The temperature–viscosity effect is combined with dynamic characteristics to analyze the stability of the rotor system and lubrication mechanism for an FRB. Influence of temperature–viscosity on the ring-journal ratio and multi-stable regions of system are studied.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 November 2023

Shuai Yang, Junxing Hou, Xiaodong An and Shuanghui Xi

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of…

Abstract

Purpose

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of ring elastic deformation on the performance of a hydrodynamic/hydrostatic FRB, including floating ring equilibrium and minimum film thickness.

Design/methodology/approach

The finite element method and finite difference method are used to solve thermohydrodynamic (THD) lubrication models, including the Reynolds equation, energy equation and temperature–viscosity equation. The deformation matrix method is applied to solve the elastic deformation equation, and then the deformation distribution, floating ring equilibrium and minimum film thickness are investigated. The maximum pressure is compared with the published article to verify the mathematical models.

Findings

The deformation value increases with the growth of shaft speed; owing to elastic deformation on the film reaction force and friction moment, the ring achieves equilibrium at a new position, and the inner eccentricity increases while the ring-shaft speed ratio declines. The minimum film thickness declines with the growth of inlet temperature, and the outer film tends to rupture considering elastic deformation at a higher temperature.

Originality/value

The floating ring elastic deformation is coupled with the THD lubrication equations to study ring deformation on the hydrodynamic/hydrostatic FRB lubrication mechanism. The elastic deformation of floating ring should be considered to improve analysis accuracy for FRBs.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0139/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 June 2020

Ningning Wu, Hong Guo, Shuai Yang and Shaolin Zhang

This paper aims to study the influence of thermal effect on the performance for a high-speed conical hybrid bearing including stability and minimum oil film thickness.

Abstract

Purpose

This paper aims to study the influence of thermal effect on the performance for a high-speed conical hybrid bearing including stability and minimum oil film thickness.

Design/methodology/approach

A thermal hydrodynamic (THD) model and dynamic model of single mass rigid rotor system were established by taking conical hybrid bearing with shallow and deep pockets as the research object, dynamic coefficient and stability parameters of bearing-rotor system were obtained by using finite element method (FEM) and finite difference method (FDM) to solve computational models of Reynolds equation, energy equation and viscosity-temperature equation. Minimum oil film thickness was obtained based on bearing force balance. Dynamic coefficient was compared with previous findings.

Findings

After considering thermal effect, the dimensionless critical mass decreases, a significant decrease in the instability speed, and the stability of the system decreases greatly; the minimum oil film thickness decreases because of thermal effect.

Originality/value

The thermal effect is combined with dynamic characteristics to analyze stability of the rotor system for a conical hybrid bearing. Influence of thermal effect on minimum oil film thickness is studied.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0542/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 June 2022

Dong Guan and Zhengrong Chen

Because of the specific structure and working mechanism, piston speed is only half of its shaft, which causes severally friction between piston and cylinder. Therefore, the main…

Abstract

Purpose

Because of the specific structure and working mechanism, piston speed is only half of its shaft, which causes severally friction between piston and cylinder. Therefore, the main purpose of this paper is to investigate the friction and wear characteristics of the incomplete spherical piston in spherical pump comprehensively. Finally, to search the low-friction and wear-resistance structural pattern of the piston, and enhance the durability of spherical pump.

Design/methodology/approach

The non-linear frictional moment model for incomplete spherical piston in spherical pump was derivated quantificationally. Parameter sensitivity analyses were conducted to find the low-friction structural pattern of the piston. The theoretical wear model of piston–cylinder pair is proposed as well.

Findings

To reduce the frictional moment between incomplete piston and cylinder, the optimised diameter ratio between piston pin and piston should be 0.12 based on the parameter sensitivity analyses. The maximum frictional moment is approximately 2.5 times of the minimum. The total efficiency should be considered synthetically based on the thickness of specific working medium.

Originality/value

The proposed non-linear frictional moment model offers the quantitative estimations. Parameter sensitivity analyses were conducted to find the low-friction structural pattern of the piston. The wear behaviours of the piston and cylinder were analysed to investigate the wear characteristics of the piston.

Details

Industrial Lubrication and Tribology, vol. 74 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 1940

In an aeroplane, a control column comprising a grip member, a base member, and a cutaway member provided with slots, said base member being movably mounted in said slots.

Abstract

In an aeroplane, a control column comprising a grip member, a base member, and a cutaway member provided with slots, said base member being movably mounted in said slots.

Details

Aircraft Engineering and Aerospace Technology, vol. 12 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 21 November 2018

Dong Guan, Li Jing, Junjie Gong, Zhengwei Yang and Hui Shen

Rotary disc is a key component in the compact spherical pump, connecting shaft and piston, bearing hydraulic force conformally and constituting dynamic working chambers…

Abstract

Purpose

Rotary disc is a key component in the compact spherical pump, connecting shaft and piston, bearing hydraulic force conformally and constituting dynamic working chambers alternatively. Motion of rotary disc comprises two components. One is rotating around its own axis and the other is sliding on a cone surface. Therefore, it is necessary to investigate the friction and wear mechanism between rotary disc and cylinder under a complicated operation condition.

Design/methodology/approach

Structural properties of rotary disc are analyzed first. Frictional moment of rotary disc is modeled based on its structural characteristics and working mechanism, and the constraints of the structural parameters are considered. Besides, the concept of dimensionless contact area is proposed. Comparison is performed between the proposed concept and the frictional moment to determine an optimized beginning angle for spherical pump with a given displacement. The wear model of rotary disc is also established based on its kinematic property, a velocity coefficient is proposed and its common values are presented.

Findings

Effects of structural parameters, i.e. beginning angle and ending angle on the frictional moment, are obtained quantitatively. The frictional moment increases with beginning and ending angle with different rates. While the dimensionless contact area decreases with beginning angle. The larger the piston angle, the larger the velocity coefficient will be. The rotary disc wears severely with a larger beginning angle and smaller ending angle, while it has the smallest wear rate under a smaller beginning angle and a larger ending angle.

Originality/value

The originality lies in modeling the complex contact force of rotary disc based on its specific structure. These conclusions can be used to optimize the structural parameters of rotary disc.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2021

S. D. Farahani and Amir Hossein Rabiee

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square…

Abstract

Purpose)

In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square cylinder that vibrates freely in the cross-flow direction is investigated.

Design/methodology/approach

To this aim, two small control rods are placed at constant angles of ± 45° relative to the horizontal axis and then the influence of diameter and spacing ratios on the oscillation and hydrodynamic response along with the vortex structure behind the cylinder is evaluated in the form of nine different cases in both VIV and galloping regions.

Findings

The performed simulations show that using the configuration presented in this study results in full VIV suppression for the spacing ratios G/D = 0.5, 1 and 1.5 at the diameter ratios d/D = 0.1, 0.2 and 0.3 (D: diameter of square cylinder, G: distance between rods and cylinder, d: diameter of rods). On the contrary, a perfect attenuation of galloping is only achieved at the largest diameter (d/D = 0.3) and the smallest spacing ratio (G/D = 0.5). In general, for both VIV and galloping regions, with increasing diameter ratio and decreasing spacing ratio, the effect of the control rods wake in the vortex street of square cylinder gradually increases. This trend carries on to the point where the vortex shedding is completely suppressed and only the symmetric wake of control rods is observed.

Originality/value

So far, the effect of rod control on VIV of a square cylinder and its amplitude of oscillations has not been investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 December 2008

Isabelle Streng

This article focuses on group work with children using a board game format. Combining the principles of group work and board games helps to engage and motivate children and…

Abstract

This article focuses on group work with children using a board game format. Combining the principles of group work and board games helps to engage and motivate children and adolescents to address and work through their difficulties. Lifegames are a series of six therapeutic board games developed for group work with children and adolescents who encounter adversity in their life as a consequence of bereavement, family break up, poor relationships, bullying, chronic illness or obesity. The games facilitate the understanding and disclosure of the complex feelings experienced by children and young people when they are confronted with traumatic life events. The games encourage and assist the participants to obtain and maintain behavioural change. Lifegames are a means to assist professionals in their group work with children and adolescents.

Details

Journal of Public Mental Health, vol. 7 no. 4
Type: Research Article
ISSN: 1746-5729

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2496

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 July 2019

Van Luc Nguyen, Tomohiro Degawa and Tomomi Uchiyama

This paper aims to provide discussions of a numerical method for bubbly flows and the interaction between a vortex ring and a bubble plume.

Abstract

Purpose

This paper aims to provide discussions of a numerical method for bubbly flows and the interaction between a vortex ring and a bubble plume.

Design/methodology/approach

Small bubbles are released into quiescent water from a cylinder tip. They rise under the buoyant force, forming a plume. A vortex ring is launched vertically upward into the bubble plume. The interactions between the vortex ring and the bubble plume are numerically simulated using a semi-Lagrangian–Lagrangian approach composed of a vortex-in-cell method for the fluid phase and a Lagrangian description of the gas phase.

Findings

A vortex ring can transport the bubbles surrounding it over a distance significantly depending on the correlative initial position between the bubbles and the core center. The motion of some bubbles is nearly periodic and gradually extinguishes with time. These bubble trajectories are similar to two-dimensional-helix shapes. The vortex is fragmented into multiple regions with high values of Q, the second invariant of velocity gradient tensor, settling at these regional centers. The entrained bubbles excite a growth rate of the vortex ring's azimuthal instability with a formation of the second- and third-harmonic oscillations of modes of 16 and 24, respectively.

Originality/value

A semi-Lagrangian–Lagrangian approach is applied to simulate the interactions between a vortex ring and a bubble plume. The simulations provide the detail features of the interactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 26