Search results

1 – 10 of 134
Article
Publication date: 1 January 1995

P. Drazétic, R. Tassin and Y. Ravalard

Rigid multibody modelling is used to study the crash‐relatedglobal behaviour of transport vehicles. These models are made up rigidbodies, joints and springs. Distinct kinematic…

Abstract

Rigid multibody modelling is used to study the crash‐related global behaviour of transport vehicles. These models are made up rigid bodies, joints and springs. Distinct kinematic models have been developed in order to analytically determine the resistance to collapse of thin‐walled structures of simple geometry subjected to compression or bending loading. The modeller must position these different elements but has no information on their numbers and their locations. For this reason, a modelling aiding tool, based on the elastic buckling analysis, has been developed. This method is used to resolve a problem of an “S” frame undergoing a collision against a rigid block to estimate its validity.

Details

Engineering Computations, vol. 12 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1992

KJELL MAGNE MATHISEN and PÅL G. BERGAN

This paper discusses algorithms for large displacement analysis of interconnected flexible and rigid multibody systems. Hydrostatic and hydrodynamic loads for systems being…

Abstract

This paper discusses algorithms for large displacement analysis of interconnected flexible and rigid multibody systems. Hydrostatic and hydrodynamic loads for systems being submerged in water are also considered. The systems may consist of cables and beams and may combine very flexible parts with rigid parts. Various ways of introducing structural joints are discussed. A special implementation of the Hilber‐Hughes‐Taylor time integration scheme for constrained non‐linear systems is outlined. The formulation is general and allows for displacements and rotational motion of unlimited size. Aspects concerning efficient solution of constrained dynamic problems are discussed. These capabilities have been implemented in a general purpose non‐linear finite element program. Applications involving static and dynamic analysis of a bi‐articulated tower and a floating tripod platform kept in place by three anchor lines are discussed.

Details

Engineering Computations, vol. 9 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1986

Ronald L. Huston

This paper presents algorithms for computing the angular velocities of the bodies of a multibody system. A multibody system is any collection of connected bodies. The focus is…

Abstract

This paper presents algorithms for computing the angular velocities of the bodies of a multibody system. A multibody system is any collection of connected bodies. The focus is upon multibody systems consisting of spherically pinned rigid bodies which do not form closed loops. Simple formulae are presented for computing the angular velocities. It is shown that once the angular velocities are known the entire kinematical description and hence, the dynamics of the system, may be developed routinely and in automated fashion. Extension to more general multibody systems follows without conceptual change in the procedures.

Details

Engineering Computations, vol. 3 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 5 October 2012

Denis Anders, Stefan Uhlar, Melanie Krüger, Michael Groß and Kerstin Weinberg

Wind turbines are of growing importance for the production of renewable energy. The kinetic energy of the blowing air induces a rotary motion and is thus converted into…

Abstract

Purpose

Wind turbines are of growing importance for the production of renewable energy. The kinetic energy of the blowing air induces a rotary motion and is thus converted into electricity. From the mechanical point of view the complex dynamics of wind turbines become a matter of interest for structural optimization and optimal control in order to improve stability and energy efficiency. The purpose of this paper therefore is to present a mechanical model of a three‐blade wind turbine with a momentum and energy conserving time integration of the system.

Design/methodology/approach

The authors present a mechanical model based upon a rotationless formulation of rigid body dynamics coupled with flexible components. The resulting set of differential‐algebraic equations will be solved by using energy‐consistent time‐stepping schemes. Rigid and orthotropic‐elastic body models of a wind turbine show the robustness and accuracy of these schemes for the relevant problem.

Findings

Numerical studies prove that physically consistent time‐stepping schemes provide reliable results, especially for hybrid wind turbine models.

Originality/value

The application of energy‐consistent methods for time discretization is intended to provide computational robustness and to reduce the computational costs of the dynamical wind turbine systems. The model is aimed to give a first access into the investigation of fluid‐structure interaction for wind turbines.

Article
Publication date: 5 May 2015

Bindi You, Huibo Zhang, Peixiang Wang and Jiang Zhang

– The purpose of this paper is to analyze the effect of the space thermal effect on satellite antenna.

Abstract

Purpose

The purpose of this paper is to analyze the effect of the space thermal effect on satellite antenna.

Design/methodology/approach

In this paper, according to the geometric characteristics of parabolic reflector, the transient temperature field of an element along its thickness direction is built for shell structures using finite element discretization and the quadratic function interpolation, and heat conduction equations are derived based on the theory of the thermo-elastic dynamics. The modeling theory of rigid–flexible coupling system considering thermal effect is extended to the satellite antenna system. Then, the coupling dynamic equations are established including coupling stiffness matrix and thermal loaded undergoing a large overall motion. Finally, an adaptive controller is proposed and the adaptive update laws are designed under the parameter uncertainty.

Findings

The results of dynamic characteristic analysis show that the dynamic thermal loaded coupled with structure deformation induce the unstable vibration and coupled flutter. Further, the coupling effect degrades the antenna pointing accuracy seriously and leads to disturbances on satellite base. The results of the simulation show that the adaptive controller can ensure that antenna pointing closes to the expected trajectory progressively, and it demonstrates that the proposed control scheme is feasible and effective.

Research limitations/implications

The paper considers only the effect of space thermal effect to satellite antenna. Further research could be done on the flexible multibody system by considering joint clearance in the future research.

Originality/value

The conclusions of this paper would be an academic significance and engineering value for the analysis and control of satellite antenna pointing.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 March 2004

Petros I. Komodromos and John R. Williams

The discrete element methods (DEM) are numerical techniques that have been specifically developed to enable simulations of systems of multiple distinct, typically infinitely rigid

1025

Abstract

The discrete element methods (DEM) are numerical techniques that have been specifically developed to enable simulations of systems of multiple distinct, typically infinitely rigid, bodies that interact with each other through contact forces. However, there are multibody systems for which it is useful to consider the deformability of the simulated bodies and enable the evaluation of their stress and strain distributions. This paper focuses on the simulation of deformable multibody systems using a combination of DEM and finite element methods (FEM). In particular, an updated Lagrangian (UL) finite element (FE) formulation and an explicit time integration scheme are used together with some simplifying assumptions to linearize this highly nonlinear contact problem and obtain solutions with realistic computational cost and sufficiently good accuracy. In addition, this paper describes a software implementation of this formulation, which utilizes the Java programming language and the Java3D graphics application programming interface (API), as well as database technology.

Details

Engineering Computations, vol. 21 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 May 2018

Adam Dacko, Pawel Borkowski, Lukasz Pawel Lindstedt, Cezary Rzymkowski and Miroslaw Rodzewicz

This paper aims to present the assumptions, analysis and sample results of numerical modeling and analysis of dynamic events encountered in emergency cases during deployment of…

Abstract

Purpose

This paper aims to present the assumptions, analysis and sample results of numerical modeling and analysis of dynamic events encountered in emergency cases during deployment of parachute rescue system (PRS) and hard landing of a small gyrocopter. The optimal design requires knowledge of structural loads and structural response – the information obtained often from experiment. Numerical simulation is presented as an alternative tool for estimating these data.

Design/methodology/approach

Structural analyses were performed using MSC.Nastran. Multibody simulations were done using MADYMO system.

Findings

Initial design parameters were evaluated and verified in numerical simulations. Some of the resulting conclusions were proven during the test flights.

Practical implications

Some chosen results of simulation of dynamic problems are presented. They can be useful as reference values for similar cases for light aircraft analysis.

Originality/value

The paper presents an alternative way of assessing structural response parameters in the case of emergency dynamic events of usage of PRS. The results can be used in other projects.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 2014

Jae-Sang Park

This paper aims to correlate the flexible multibody analysis for the performance, blade airloads, rotor pitch control angles, and blade structural loads of a full-scale utility…

Abstract

Purpose

This paper aims to correlate the flexible multibody analysis for the performance, blade airloads, rotor pitch control angles, and blade structural loads of a full-scale utility helicopter rotor in low-speed forward flight with wind tunnel test and flight test data.

Design/methodology/approach

A nonlinear flexible multibody dynamics analysis code, DYMORE, is used to analyze the performance and aeromechanics of a utility helicopter rotor in low-speed forward flight. The main rotor system is modeled using various multibody elements such as rigid bodies, nonlinear elastic beams, mechanical joints, and elastic springs/dampers. The freewake model is used to capture rotor wakes more elaborately in low-speed forward flight.

Findings

Fair to good correlations of rotor performance such as figure of merit in hover, rotor power, propulsive force, and lift in low-speed forward flight are achieved with sweeps of the thrust, rotor shaft tilting angle, and advance ratio, against wind tunnel test data. The blade section normal forces from the mid-span to outboard are fairly or well correlated with flight test data, but the normal force at the inboard blade station is under-predicted. The trimmed pitch control angles are reasonably predicted; however, the lateral cyclic pitch control angle is moderately under-predicted. The flap bending moments are compared fairly with measurements; however, the oscillations of the lead-lag bending and torsion moments are not captured well.

Practical implications

Reasonable predictions of the performance and aeromechanics of the rotor in low-speed forward flight will allow the flexible multibody dynamics to be used for the rotorcraft comprehensive analysis, in place of expensive flight and wind tunnel tests of the rotor.

Originality/value

Up to now, the stand-alone flexible multibody dynamics without the aid of external aerodynamic analysis has not been widely used for the analyses of rotor performance and aeromechanics in low-speed forward flight. However, the present flexible multibody dynamics analysis directly integrated with the freewake model gives fair to good correlation of the rotor performance and aeromechanics predictions in low-speed forward flight.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 10 of 134