Search results

1 – 1 of 1
Article
Publication date: 6 September 2019

Andreas Diermeier, Dirk Sindersberger, Peter Angele, Richard Kujat and Gareth John Monkman

Ultrasound is a well-established technology in medical science, though many of the conventional measurement systems (hydrophones and radiation force balances [RFBs]) often lack…

Abstract

Purpose

Ultrasound is a well-established technology in medical science, though many of the conventional measurement systems (hydrophones and radiation force balances [RFBs]) often lack accuracy and tend to be expensive. This is a significant problem where sensors must be considered to be “disposable” because they inevitably come into contact with biological fluids and expense increases dramatically in cases where a large number of sensors in array form are required. This is inevitably the case where ultrasound is to be used for the in vitro growth stimulation of a large plurality of biological samples in tissue engineering. Traditionally only a single excitation frequency is used (typically 1.5 MHz), but future research demands a larger choice of wavelengths for which a single broadband measurement transducer is desirable. Furthermore, because of implementation conditions there can also be large discrepancies between measurements. The purpose of this paper deals with a very cost-effective alternative to expensive RFBs and hydrophones.

Design/methodology/approach

Utilization of cost-effective piezoelectric elements as broadband sensors.

Findings

Very effective results with equivalent (if not better) accuracy than expensive alternatives.

Originality/value

This paper concentrates on how very cost-effective piezoelectric ultrasound transducers can be implemented as sensors for ultrasound power measurements with accuracy as good, if not better than those achievable using radiation force balances or hydrophones.

Access

Year

All dates (1)

Content type

1 – 1 of 1