Search results

1 – 10 of 48
Open Access
Article
Publication date: 14 February 2023

Federica Ciccullo, Margherita Pero and Andrea S. Patrucco

The theory of complex adaptive systems (CASs) represents an interesting perspective to study the characteristics of circular supply chains (CSCs). In this regard, the current…

2375

Abstract

Purpose

The theory of complex adaptive systems (CASs) represents an interesting perspective to study the characteristics of circular supply chains (CSCs). In this regard, the current literature lacks evidence regarding coordination and integration mechanisms, characteristics of the environment and emerging system properties of CSCs. This paper aims to fill this gap and focuses on how and why companies design (i.e. configure and coordinate) their CSCs and what value these design choices help to create across different industries.

Design/methodology/approach

The authors use a multiple case study approach and analyze data collected from a sample of five sustainable start-ups operating in the fashion and construction industries in Italy to better understand how these companies design (i.e. configure and coordinate) their CSCs.

Findings

Results reveal that in the two industries under investigation, the design of CSCs built around open and closed–loop logic is triggered by the intention to solve a negative sustainability impact. The sustainability impact determines whether the value is restored within the same supply chain, in another, or inside or outside the same industry. Interestingly, start-ups appear to coordinate other CSC actors with three leading roles: (1) orchestrator, (2) integrated orchestrator and (3) circular manufacturer. The coordination role of the start-ups differs in each supply chain configuration based on the level of vertical integration of manufacturing activities.

Originality/value

From a theoretical perspective, the authors' results expand previous supply chain management (SCM) literature by presenting an empirical analysis of the configuration and coordination of CSCs, and discussing the drivers for creating such circularity from a CAS perspective. From a managerial perspective, the authors offer a practical experience to entrepreneurs on how to transform circular and sustainable business model aspirations into CSC practices.

Details

The International Journal of Logistics Management, vol. 34 no. 3
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 May 2023

Taraprasad Mohapatra and Sudhansu Sekhar Mishra

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel…

Abstract

Purpose

The study aims to verify and establish the result of the most suitable optimization approach for higher performance and lower emission of a variable compression ratio (VCR) diesel engine. In this study, three types of test fuels are taken and tested in a variable compression ratio diesel engine (compression ignition). The fuels used are conventional diesel fuel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3). The effect of bioethanol and nano-particles on performance, emission and cost-effectiveness is investigated at different load and compression ratios (CRs). The optimum performance and lower emission of the engine are evaluated and compared with other optimization methods.

Design/methodology/approach

The test engine is run by diesel, e-diesel (85% diesel-15% bioethanol) and nano-fuel (85% diesel-15% bioethanol-25 ppm Al2O3) in three different loadings (4 kg, 8 kg and 12 kg) and CR of 14, 16 and 18, respectively. The optimum value of energy efficiency, exergy efficiency, NOX emission and relative cost variation are determined against the input parameters using Taguchi-Grey method and confirmed by response surface methodology (RSM) technique.

Findings

Using Taguchi-Grey method, the maximum energy and exergy efficiency, minimum % relative cost variation and NOX emission are 24.64%, 59.52%, 0 and 184 ppm, respectively, at 4 kg load, 18 CR and fuel type of nano-fuel. Using RSM technique, maximum energy and exergy efficiency are 24.8% and 62.9%, and minimum NOX emission and % cost variation are 208.4 ppm and –6.5, respectively, at 5.2 kg load, 18 CR and nano-fuel. The RSM is suggested as the most appropriate technique for obtaining maximum energy and exergy efficiency, and minimum % relative cost; however, for lowest possible NOX emission, the Taguchi-Grey method is the most appropriate.

Originality/value

Waste rice straw is used to produce bioethanol. 4-E analysis, i.e. energy, exergy, emission and economic analysis, has been carried out, optimized and compared.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 October 2023

Oluseyi Julius Adebowale and Justus Ngala Agumba

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to…

Abstract

Purpose

The United Nations has demonstrated a commitment to preserving the ecosystem through its 2030 sustainable development goals agenda. One crucial objective of these goals is to promote a healthy ecosystem and discourage practices that harm it. Building materials production significantly contributes to the emissions of greenhouse gases. This poses a threat to the ecosystem and prompts a growing demand for sustainable building materials (SBMs). The purpose of this study is to investigate SBMs to determine their utilization in construction operations and the potential impact their application could have on construction productivity.

Design/methodology/approach

A systematic review of the existing literature in the field of SBMs was conducted for the study. The search strings used were “sustainable” AND (“building” OR “construction”) AND “materials” AND “productivity”. A total of 146 articles were obtained from the Scopus database and reviewed.

Findings

Bio-based, cementitious and phase change materials were the main categories of SBMs. Materials in these categories have the potential to substantially contribute to sustainability in the construction sector. However, challenges such as availability, cost, expertise, awareness, social acceptance and resistance to innovation must be addressed to promote the increased utilization of SBMs and enhance construction productivity.

Originality/value

Many studies have explored SBMs, but there is a dearth of studies that address productivity in the context of SBMs, which leaves a gap in understanding. This study addresses this gap by drawing on existing studies to determine the potential implications that using SBMs could have on construction productivity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 November 2022

Mohd Nazri Ahmad, Mohamad Ridzwan Ishak, Mastura Mohammad Taha, Faizal Mustapha and Zulkiflle Leman

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber…

Abstract

Purpose

The purpose of this paper is to investigate the tensile strength, Young’s modulus, dimensional stability and porosity of acrylonitrile butadiene styrene (ABS)–oil palm fiber composite filament for fused deposition modeling (FDM).

Design/methodology/approach

A new feedstock material for FDM comprising oil palm fiber and ABS as a matrix was developed by a twin screw extruder. The composite filament contains 0, 3, 5 and 7 Wt.% of oil palm fiber in the ABS matrix. The tensile test is then performed on the fiber composite filament, and the wire diameter is measured. In this study, the Archimedes method was used to determine the density and the porosity of the filament. The outer surface of the wire composite was examined using an optical microscope, and the analysis of variance was used to assess the significance and the relative relevance of the primary factor.

Findings

The results showed that increasing the fiber loading from 0.15 to 0.4 MPa enhanced tensile strength by 60%. Then, from 16.1 to 18.3 MPa, the Young’s modulus rose by 22.8%. The density of extruded filament decreased and the percentage of porosity increased when the fiber loading was increased from 3 to 7 Wt.%. The diameter deviation of the extruded filaments varied from −0.21 to 0.04 mm.

Originality/value

This paper highlights a novel natural resource-based feedstock material for FDM. Its mechanical and physical properties were also discovered.

Article
Publication date: 21 June 2023

Mohamed El Boukhari, Ossama Merroun, Chadi Maalouf, Fabien Bogard and Benaissa Kissi

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for…

Abstract

Purpose

The purpose of this study is to experimentally determine whether mechanical properties of concrete can be improved by using olive pomace aggregates (OPA) as a substitute for natural sand. Two types of OPA were tested by replacing an equivalent amount of natural sand. The first type was OPA mixed with olive mill wastewater (OMW), and the second type was OPA not mixed with OMW. For each type, two series of concrete were produced using OPA in both dry and saturated states. The percentage of partial substitution of natural sand by OPA varied from 0% to 15%.

Design/methodology/approach

The addition of OPA leads to a reduction in the dry density of hardened concrete, causing a 5.69% decrease in density when compared to the reference concrete. After 28 days, ultrasonic pulse velocity tests indicated that the resulting material is of good quality, with a velocity of 4.45 km/s. To understand the mechanism of resistance development, microstructural analysis was conducted to observe the arrangement of OPA and calcium silicate hydrates within the cementitious matrix. The analysis revealed that there is a low level of adhesion between the cement matrix and OPA at interfacial transition zone level, which was subsequently validated by further microstructural analysis.

Findings

The laboratory mechanical tests indicated that the OPCD_OPW (5) sample, containing 5% of OPA, in a dry state and mixed with OMW, demonstrated the best mechanical performance compared to the reference concrete. After 28 days of curing, this sample exhibited a compressive strength (Rc) of 25 MPa. Furthermore, it demonstrated a tensile strength of 4.61 MPa and a dynamic modulus of elasticity of 44.39 GPa, with rebound values of 27 MPa. The slump of the specimens ranged from 5 cm to 9 cm, falling within the acceptable range of consistency (Class S2). Based on these findings, the OPCD_OPW (5) formulation is considered optimal for use in concrete production.

Originality/value

This research paper provides a valuable contribution to the management of OPA and OMW (OPA_OMW) generated from the olive processing industry, which is known to have significant negative environmental impacts. The paper presents an intriguing approach to recycling these materials for use in civil engineering applications.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 April 2023

R. Rathinamoorthy, T. Sharmila Bharathi, M. Snehaa and C. Swetha

Mycelium is an upcoming bio-based alternative material that has various applications in different industries. Mycelium materials used as composites, leather, construction…

Abstract

Purpose

Mycelium is an upcoming bio-based alternative material that has various applications in different industries. Mycelium materials used as composites, leather, construction materials and some are even available for commercial purposes. However, there was not much research found when it came to the application of mycelium as a textile alternative. The purpose of this paper is to examine the potential of mycelium in the textile industry and its possible applications.

Design/methodology/approach

This review consolidates literature that refers the two major methods used in fungal mycelium production namely; as a composite and as a pure self-grown mycelium sheet. The study compared the current research status in this respective field and reported the scope in the pure mycelium development.

Findings

The results of the review reported that several research works are performed in composite production with different feedstock. The production methods and product development steps were well established for several applications from home utilities to construction materials. Whereas, in the case of self-grown mycelium sheet production only limited research works were found. Though the possibilities of engineered composite sheets are developed with various properties, research on self-grown pure mycelium sheets are at infant stage. Sensitive production methods, lower tensile, tearing, poor handle properties with brittle structure and non-uniformity in thickness are noted as limitations. Sustainable nature, self-grown three-dimensional nano-fibril network with porous structure are found to be advantageous.

Originality/value

The solid culture method was identified as a potential method to develop a sheet-like self-grown mycelium with different dimensions. The review results clearly show the lack of research in the direct application of self-grown pure mycelium area concerning feedstock material, fungal species selection and characterization of the developed product. Addressing the existing limitations will yield a sustainable textile material for fashion and textile industry with great potential.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 December 2023

Prashant Anerao, Atul Kulkarni and Yashwant Munde

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Abstract

Purpose

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Design/methodology/approach

The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.

Findings

To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.

Originality/value

The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Book part
Publication date: 5 June 2023

Ariva Sugandi Permana, Sholihin As’ad and Chantamon Potipituk

The zero-waste term in municipal solid waste management has been the utopian objective of every waste management authority in the cities in developing countries, even though it…

Abstract

The zero-waste term in municipal solid waste management has been the utopian objective of every waste management authority in the cities in developing countries, even though it comes with different perceptions, which are sometimes misguided. People can produce no waste unless they live with no consumption. The zero-waste term does not mean that we produce no waste, rather we dump no waste at the landfill site. It means we dispose of nothing at a landfill site since the issue of landfill site can be a culprit of waste management, for its reiterating city land demands that generate “headaches” to city authority because of NIMBYism (Not In My Back Yard issue). No one accepts living voluntarily next to a landfill site as it creates more harm than harmless. With zero waste at the landfill site in mind, the waste management authority attempts to deal with the complexity of municipal solid waste management, by reviving each element of the waste management stakeholders to concertedly move on to deal with waste. Individual households and communities, without which waste management will not be successful, were positioned as the main thrust of waste management. A multipronged approach was implemented with all stakeholders, i.e., lawmakers, regulators, waste producers, implementers, and pressure groups, appearing with different functions but a common point: zero waste at the landfill site. A stakeholder with a large capacity, i.e., local government focuses on creating a large project that has a large impact on overall waste management; private sectors may contribute to establishing recycling centers, and waste-to-energy projects. Meanwhile, the individual households, which are large in number but have a small capacity, establish community-based activities, i.e., waste banks. This chapter attempts to provide the overall picture of municipal solid waste management in 14 cities in developing countries toward their goal of zero waste at landfill sites.

1 – 10 of 48