Search results

1 – 4 of 4
Open Access
Article
Publication date: 30 September 2019

Andrea Mantelli, Marinella Levi, Stefano Turri and Raffaella Suriano

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will…

2759

Abstract

Purpose

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will enable the rapid fabrication of environmentally sustainable structures with complex shapes and good mechanical properties. These three-dimensional printed objects will have several application fields, such as street furniture and urban renewal, thus promoting a circular economy model.

Design/methodology/approach

For this purpose, a low-cost liquid deposition modeling technology was used to extrude photo-curable and thermally curable composite inks, composed of an acrylate-based resin loaded with different amounts of mechanically recycled glass fiber reinforced composites (GFRCs). Rheological properties of the extruded inks and their printability window and the conversion of cured composites after an ultraviolet light (UV) assisted extrusion were investigated. In addition, tensile properties of composites remanufactured by this UV-assisted technology were studied.

Findings

A printability window was found for the three-dimensional printable GFRCs inks. The formulation of the composite printable inks was optimized to obtain high quality printed objects with a high content of recycled GFRCs. Tensile tests also showed promising mechanical properties for printed GFRCs obtained with this approach.

Originality/value

The novelty of this paper consists in the remanufacturing of GFRCs by the three-dimensional printing technology to promote the implementation of a circular economy. This study shows the feasibility of this approach, using mechanically recycled EoL GFRCs, composed of a thermoset polymer matrix, which cannot be melted as in case of thermoplastic-based composites. Objects with complex shapes were three-dimensional printed and presented here as a proof-of-concept.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 14 September 2015

Xia He, Lin Zhong, Guorong Wang, Yang Liao and Qingyou Liu

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the…

2490

Abstract

Purpose

This paper aims to carry out tribological experiments to explore the applications of femtosecond laser surface texturing technology on rock bit sliding bearing to enhance the lifetime and working performance of rock bit sliding bearing under high temperature and heavy load conditions.

Design/methodology/approach

Surface textures on beryllium bronze specimen were fabricated by femtosecond laser ablation (800 nm wavelength, 40 fs pulse duration, 1 kHz pulse repetition frequency), and then the tribological behaviors of pin-on-disc configuration of rock bit bearing were performed with 20CrNiMo/beryllium bronze tribo-pairs under non-Newtonian lubrication of rock bit grease.

Findings

The results showed that the surface texture on beryllium bronze specimens with specific geometrical features can be achieved by optimizing femtosecond laser processing via adjusting laser peak power and exposure time; more than 52 per cent of friction reduction was obtained from surface texture with a depth-to-diameter ratio of 0.165 and area ratio of 5 per cent at a shear rate of 1301 s−1 under the heavy load of 20 MPa and high temperature of 120°C, and the lubrication regime of rock bit bearing unit tribo-pairs was improved from boundary to mixed lubrication, which indicated that femtosecond laser ablation technique showed great potential in promoting service life and working performance of rock bit bearing.

Originality/value

Femtosecond laser-irradiated surface texture has the potential possibility for application in rock bit sliding bearing to improve the lubrication performance. Because proper micro dimples showed good lubrication and wear resistance performance for unit tribo-pairs of rock bit sliding bearing under high temperature, heavy load and non-Newtonian lubrication conditions, which is very important to improve the efficiency of breaking rock and accelerate the development of deep-water oil and gas resources.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

923

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 May 2023

Jiwan S. Sidhu, Tasleem Zafar, Abdulwahab Almusallam, Muslim Ali and Amani Al-Othman

The major objective of this research work was to evaluate various physico-chemical characteristics, such as, chemical composition, antioxidant capacity, objective color and…

1013

Abstract

Purpose

The major objective of this research work was to evaluate various physico-chemical characteristics, such as, chemical composition, antioxidant capacity, objective color and texture profile analysis (TPA) of the wheat flour/chickpea flour (CF) blends, so that nutritious baked products could be consumed by the type-2 diabetic persons.

Design/methodology/approach

Wholegrain wheat flour (WGF) and white wheat flour (WWF) were substituted with CF at 0 to 40% levels. These wheat flour/CF blends were analyzed for proximate composition, the prepared dough and baked breads were tested for objective color, antioxidant capacity as trolox equivalent antioxidant capacity (TEAC), malondialdehyde (MDA) and total phenolic content (TPC) and TPA.

Findings

WGF had the highest TEAC (117.42 mM/100g) value, followed by WWF (73.98 mM/100g) and CF (60.67 mM/100g). TEAC, MDA and TPC values varied significantly among all the three flour samples.

Research limitations/implications

Inclusion of whole chickpea (without dehulling) flour in such type of blends would be another interesting investigation during the future research studies.

Practical implications

These research findings have a great potential for the production of these baked products for human consumption on an industrial scale.

Social implications

Production of breads using wheat flour and CF blends would benefits the consumers.

Originality/value

Production of Arabic and pan breads using wheat flour and CF blends would, therefore, combine the benefits of both the needed proteins of plant origin and the health-promoting bioactive compounds, in a most sustainable way for the consumers.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 4 of 4