Search results

1 – 10 of 325
Article
Publication date: 23 September 2022

Shahrooz Sadeghi Borujeni, Gursimran Singh Saluja and Vasily Ploshikhin

This study aims at compensating for sintering deformation of components manufactured by metal binder jetting (MBJ) technology.

Abstract

Purpose

This study aims at compensating for sintering deformation of components manufactured by metal binder jetting (MBJ) technology.

Design/methodology/approach

In the present research, numerical simulations are used to predict sintering deformation. Subsequently, an algorithm is developed to counteract the deformations, and the compensated deformations are morphed into a CAD model for printing. Several test cases are designed, compensated and manufactured to evaluate the accuracy of the compensation calculations. A consistent accuracy measurement method is developed for both green and sintered parts. The final sintered parts are compared with the desired final shape, and the accuracy of the model is discussed. Furthermore, the effect of initial assumptions in the calculations, including green part densities, and green part dimensions on the final dimensional accuracy are studied.

Findings

The proposed computational framework can compensate for the sintering deformations with acceptable accuracy, especially in the directions, for which the used material model has been calibrated. The precise assumption of green part density values is important for the accuracy of compensation calculations. For achieving tighter dimensional accuracy, green part dimensions should be incorporated into the computational framework.

Originality/value

Several studies have already predicted sintering deformations using numerical methods for MBJ parts. However, very little research has been dedicated to the compensation of sintering deformations with numerical simulations, and to the best of the best of the authors' knowledge, no previous work has studied the effect of green part properties on dimensional accuracy of compensation calculations. This paper introduces a method to omit or minimize the trial-and-error experiments and leads to the manufacturing of dimensionally accurate geometries.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 September 1998

James C. Robinson, John S. Campbell and Denis Kelliher

An algorithm is presented for the tracking of interior points in a shape evolving unstructured FE mesh. Evolution of the boundary shape may be associated with a governing…

Abstract

An algorithm is presented for the tracking of interior points in a shape evolving unstructured FE mesh. Evolution of the boundary shape may be associated with a governing equation, as in moving boundary problems, or may be prescribed, as in structural shape optimisation. In the latter SSO case the point tracking algorithm may be used in conjunction with a FD approximation to determine geometric sensitivities: in this case the boundary deformation is a small perturbation. For meshes undergoing gross deformations of the boundary an incremental method is used. Reversibility tests are undertaken to assess the robustness and accuracy of the algorithm and examples are given to illustrate the general utility of the method.

Details

Engineering Computations, vol. 15 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 July 2020

Fusheng Dai, Haiou Zhang and Runsheng Li

The study aims to fabricate large metal components with overhangs built on cylindrical or conical surfaces with a high dimensional precision. It proposes methods to address the…

Abstract

Purpose

The study aims to fabricate large metal components with overhangs built on cylindrical or conical surfaces with a high dimensional precision. It proposes methods to address the problems of generating tool-paths on cylindrical or conical surfaces simply and precisely, and planning the welding process on these developable surfaces.

Design/methodology/approach

The paper presents the algorithm of tool-paths planning on conical surfaces using a parametric slicing equation and a spatial mapping method and deduces the algorithm of five-axis transformation by addressing the rotating question of two sequential points. The welding process is investigated with a regression fitting model on a flat surface, and experimented on a conical surface, which can be flattened onto a flat surface.

Findings

The paper provides slicing and path-mapping expressions for cylindrical and conical surfaces and a curvature-speed-width (CSW) model for wire and arc additive manufacturing to improve the surface appearances. The path-planning method and CSW model can be applied in the five-axis fabrication of the prototype of an underwater thruster. The CSW model has a confidence coefficient of 98.02% and root mean squared error of 0.2777 mm. The reverse measuring of the finished blades shows the residual deformation: an average positive deformation of about 0.5546 mm on one side of the blades and an average negative deformation of about −0.4718 mm on the other side.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability for the fabrication based on arbitrary surfaces.

Originality/value

This paper presented an integrated slicing, tool-path planning and welding process planning method for five-axis wire and arc additive manufacturing.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 March 2006

R. Sunyk and P. Steinmann

Continuum‐atomistic modeling denotes a mixed approach combining the usual framework of continuum mechanics with atomistic features like e.g. interaction potentials. Thereby, the…

Abstract

Continuum‐atomistic modeling denotes a mixed approach combining the usual framework of continuum mechanics with atomistic features like e.g. interaction potentials. Thereby, the kinematics are typically characterized by the so called Cauchy‐Born rule representing atomic distance vectors in the spatial configuration as an affine mapping of the atomic distance vectors in the material configuration in terms of the local deformation gradient. The application of the Cauchy‐Born rule requires sufficiently homogeneous deformations of the underlying crystal. The model is no more valid if the deformation becomes inhomogeneous. By virtue of the Cauchy‐Born hypothesis, a localization criterion has been derived in terms of the loss of infinitesimal rank‐1 convexity of the strain energy density. According to this criterion, a numerical yield condition has been computed for two different interatomic energy functions. Therewith, the range of the Cauchy‐Born rule validity has been defined, since the strain energy density remains quasiconvex only within the computed yield surface. To provide a possibility to continue the simulation of material response after the loss of quasiconvexity, a relaxation procedure proposed by Tadmor et al. [1] leading necessarily to the development of microstructures has been used. Alternatively to the above mentioned criterion, a stability criterion has been applied to detect the critical deformation. For the study in the postcritical region, the path‐change procedure proposed by Wagner and Wriggers [2] has been adapted for the continuum‐atomistics and modified.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 May 2015

Raffaella Santagiuliana, Massimo Fabris and Bernhard Aribo Schrefler

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the…

Abstract

Purpose

The purpose of this paper is to give an explanation of the new data available about surface subsidence above the depleted gas reservoir Ravenna Terra. These data confirm the existence after end of exploitation of a reversed subsidence bowl with minimum subsidence above the reservoir, as opposed to conventional subsidence bowls during exploitation which show maximum subsidence in the same location.

Design/methodology/approach

The paper analyses these new data about the existence after end of exploitation of a reversed subsidence bowl. The observed behaviour is reproduced successfully with a fully coupled two phase flow code in deforming reservoir rocks which incorporates a constitutive model for partially saturated porous media.

Findings

The paper provides successful simulations. These allow affirming with confidence that the explanation for the peculiar behaviour is reservoir flooding and partially saturated rock behaviour.

Research limitations/implications

Further research: other case studies where similar behaviour is expected, e.g. Ekofisk.

Practical implications

The paper includes implications for better management of reservoir exploitation schedules to minimize the observed phenomenon.

Originality/value

This paper explains the peculiar behaviour of subsidence above the depleted gas reservoir Ravenna Terra and confirms the conjecture that constitutive behaviour of partially saturated rocks is the origin of the observed phenomenon.

Details

Engineering Computations, vol. 32 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2003

Michel Bounias and Volodymyr Krasnoholovets

An abstract lattice of empty set cells is shown to be able to account for a primary substrate in a physical space. Space‐time is represented by ordered sequences of topologically…

Abstract

An abstract lattice of empty set cells is shown to be able to account for a primary substrate in a physical space. Space‐time is represented by ordered sequences of topologically closed Poincaré sections of this primary space. These mappings are constrained to provide homeomorphic structures serving as frames of reference in order to account for the successive positions of any objects present in the system. Mappings from one section to the next involve morphisms of the general structures, representing a continuous reference frame, and morphisms of objects present in the various parts of this structure. The combination of these morphisms provides space‐time with the features of a non‐linear generalized convolution. Discrete properties of the lattice allow the prediction of scales at which microscopic to cosmic structures should occur. Deformations of primary cells by exchange of empty set cells allow a cell to be mapped into an image cell in the next section as far as the mapped cells remain homeomorphic. However, if a deformation involves a fractal transformation to objects, there occurs a change in the dimension of the cell and the homeomorphism is not conserved. Then, the fractal kernel stands for a “particle” and the reduction of its volume (together with an increase in its area up to infinity) is compensated by morphic changes of a finite number of surrounding cells. Quanta of distances and quanta of fractality are demonstrated. The interactions of a moving particle‐like deformation with the surrounding lattice involves a fractal decomposition process, which supports the existence and properties of previously postulated inerton clouds as associated to particles. Experimental evidence of the existence of inertons is reviewed and further possibilities of experimental proofs proposed.

Details

Kybernetes, vol. 32 no. 7/8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 16 April 2018

Stefan Prüger, Ashutosh Gandhi and Daniel Balzani

The purpose of this study is to quantify the impact of the variation of microstructural features on macroscopic and microscopic fields. The application of multi-scale methods in…

137

Abstract

Purpose

The purpose of this study is to quantify the impact of the variation of microstructural features on macroscopic and microscopic fields. The application of multi-scale methods in the context of constitutive modeling of microheterogeneous materials requires the choice of a representative volume element (RVE) of the considered microstructure, which may be based on some idealized assumptions and/or on experimental observations. In any case, a realistic microstructure within the RVE is either computationally too expensive or not fully accessible by experimental measurement techniques, which introduces some uncertainty regarding the microstructural features.

Design/methodology/approach

In this paper, a systematical variation of microstructural parameters controlling the morphology of an RVE with an idealized microstructure is conducted and the impact on macroscopic quantities of interest as well as microstructural fields and their statistics is investigated. The study is carried out under macroscopically homogeneous deformation states using the direct micro-macro scale transition approach.

Findings

The variation of microstructural parameters, such as inclusion volume fraction, aspect ratio and orientation of the inclusion with respect to the overall loading, influences the macroscopic behavior, especially the micromechanical fields significantly.

Originality/value

The systematic assessment of the impact of microstructural parameters on both macroscopic quantities and statistics of the micromechanical fields allows for a quantitative comparison of different microstructure morphologies and a reliable identification of microstructural parameters that promote failure initialization in microheterogeneous materials.

Article
Publication date: 12 October 2020

Wenyuan Liu, Chunde Piao, Yazhou Zhou and Chaoqi Zhao

The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining…

Abstract

Purpose

The purpose of this paper is to establish a strain prediction model of mining overburden deformation, to predict the strain in the subsequent mining stage. In this way, the mining area can be divided into zones with different degrees of risk, and the prevention measures can be taken for the areas predicted to have large deformation.

Design/methodology/approach

A similar-material model was built by geological and mining conditions of Zhangzhuang Coal Mine. The evolution characteristics of overburden strain were studied by using the distributed optical fiber sensing (DOFS) technology and the predictive model about overburden deformation was established by applying machine learning. The modeling method of the predictive model based on the similar-material model test was summarized. Finally, this method was applied to engineering.

Findings

The strain value predicted by the proposed model was compared with the actual measured value and the accuracy is as high as 97%, which proves that it is feasible to combine DOFS technology with machine learning and introduce it into overburden deformation prediction. When this method was applied to engineering, it also showed good performance.

Originality/value

This paper helps to promote the application of machine learning in the geosciences and mining engineering. It provides a new way to solve similar problems.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 18 March 2022

Shengtao Lin and Zhengcai Zhao

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and…

Abstract

Purpose

Complex and exquisite patterns are sculpted on the surface to beautify the parts. Due to the thin-walled nature, the blank of the part is often deformed by the forming and clamping processes, disabling the nominal numerical control (NC) sculpting programs. To address this problem, a fast adaptive sculpting method of the complex surface is proposed.

Design/methodology/approach

The geometry of the blank surface is measured using on-machine measurement (OMM). The real blank surface is reconstructed using the non-uniform rational basis spline (NURBS) method. The angle-based flattening (ABF) algorithm is used to flatten the reconstructed blank surface. The dense points are extracted from the pattern on the image using the OpenCV library. Then, the dense points are quickly located on the complex surfaces to generate the tool paths.

Findings

By flattening the reconstructed surface and creating the mapping between the contour points and the planar mesh triangular patches, the tool paths can be regenerated to keep the contour of the pattern on the deformed thin-walled surface.

Originality/value

The proposed method can adjust the tool paths according to the deformation of the thin-walled part. The consistency of sculpting patterns is improved.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

1 – 10 of 325