Search results

1 – 10 of over 1000
Article
Publication date: 11 October 2018

Amobi C. Ekwe, Alexander I. Opara and Obialo S. Onwuka

The corrosivity and competence of soils within Uburu and Okposi areas of the Southern Benue Trough, Nigeria, were evaluated using the electrical resistivity method. This paper…

Abstract

Purpose

The corrosivity and competence of soils within Uburu and Okposi areas of the Southern Benue Trough, Nigeria, were evaluated using the electrical resistivity method. This paper aims to provide information that will aid pre-design of subsurface iron/steel pipe networks for distribution of pipe-borne water and construction of subsurface structures for agricultural and environmental purposes.

Design/methodology/approach

In total, 22 vertical electrical soundings (VES) in the Schlumberger configuration were acquired with Allied Ohmega™ Terrameter with a maximum half current (AB/2) electrode spacing of 200 m. Layer parameters were determined using partial curve matching techniques, using the Schlumberger master curves, while processing and modelling were done with the IPI2win™ software. The VES results were interpreted qualitatively and quantitatively to obtain various curve types and layer parameters, respectively, which were used to categorize the area into different competence and corrosivity zones. The first layer isoresistivity and competence maps were used to delineate four zones (A,B,C and D) with varying apparent resistivities and competences.

Findings

Incompetent soils with resistivity values ranging from 24.3-88.7 Om are found in Zone A. The soils in Zone A are mainly expansive clays which swell on absorption of water. Zone B contains moderately competent soils with resistivity values ranging from 273-308.6 Om, while Zones C and D are underlain by sandstones and contain competent to highly competent soils with resistivity values ranging from 511-750 Om and 835-1,525 Om, respectively. Zone E contains highly corrosive (24.3 Om) to mildly corrosive (102 Om) soils; Zone F contains soils that are essentially non-corrosive with resistivity values ranging from 271-1,525 Om, while the corrosivity of soils within Zone G varies from corrosive to mildly corrosive, with resistivity values ranging from 44.3-114 Om.

Research limitations/implications

Some of the areas are not accessible because of community restrictions.

Practical implications

These findings are essentially very significant and should be taken into consideration when materials that are susceptible to corrosion are being considered for engineering, agricultural and environmental purposes in the area.

Social implications

The findings will aid water resource planners and developers on how to protect metal pipes from corrosion, when used for water reticulation and agricultural purposes.

Originality/value

This paper fulfils an identified need to study the corrosivity of soils in the study area with a view to providing adequate protection to metal objects when being considered for water reticulation for domestic and agricultural purposes in the area.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 January 2007

O.S. Aleksić, B.M. Radojčić and R.M. Ramović

The paper aims to focus on thick film planar thermistors.

Abstract

Purpose

The paper aims to focus on thick film planar thermistors.

Design/methodology/approach

Thick film planar thermistors such as rectangular, sandwich, multilayer, segmented and interdigitated were printed of law temperature NTC paste called NTC 3K3 95/2 (Ei Iritel). Their resistivity was measured at room temperature as a function of volume resistivity variations due to electrode effect (diffusion of PdAg into NTC layer) and variation of geometrical parameters such as length l, width w, thickness d, number of segments n. The experimental data obtained were used in forming a model by the simple fitting procedure for counting diffusion effect on volume resistivity and resistivity dependence on geometrical parameters.

Findings

Thermal behavior of NTC thick films was measured in the range of −30‐120°C. Exponential factor B was fitted for measured values and included in the proposed thick film thermistors model. The agreement of measured and calculated data enables simulation of new thermistor geometries.

Originality/value

The paper focuses on the experiment which was the first step in forming a total physical/mathematical model proposed for thick film thermistor resistivity.

Details

Microelectronics International, vol. 24 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 March 1993

M. Hrovat, D. Belavič and A. Markošek

The direct overlapping of thick film NTC thermistors and resistors was attempted to enable the trimming of NTC thermistors to relatively narrow tolerances with little influence on…

Abstract

The direct overlapping of thick film NTC thermistors and resistors was attempted to enable the trimming of NTC thermistors to relatively narrow tolerances with little influence on beta factors. Different combinations of 1 kohm/□ thick film NTC material (4993, Remex) and 1 and 10 kohm/□RuO2 and ruthenate based thick film resistors (HS‐80 series, Du Pont), fired either together or separately, were tested. The sheet resistivities, TCR and beta factors of these combinations were measured. Microstructures were investigated by SEM and analysed by EDS. The results, i.e., the large decrease of sheet resistivities (up to ten times) and a resistivity vs. temperature dependence which changed from negative to positive TCR for some combinations, indicate the interaction between NTC materials and resistors during the firing process. These interactions are more distinctive for materials fired together. In all cases the beta factors were lower than calculated. Based on these experiments, the ‘best’ thick film resistor paste for NTC/resistor combination (HS‐8041, Du Pont) was chosen. Several layouts with partially or entirely overlapped NTC thermistors/resistors were designed. Unprotected, glass protected or organic protected circuits were laser trimmed. The resistivities and beta factors were measured as a function of resistor geometries and laser cut lengths. The results obtained demonstrated that NTC thermistors, partially overprinted with an ‘ordinary’ thick film resistor, can be trimmed to tolerances around 0.5% without any special precautions during trimming.

Details

Microelectronics International, vol. 10 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 13 April 2018

Diogo Henrique de Bem, Daniel Petzold Barbosa Lima and Ronaldo A. Medeiros-Junior

The purpose of this paper is to verify the influence of superplasticizer and air entrainment admixtures (AEs) in the electrical resistivity of concrete.

Abstract

Purpose

The purpose of this paper is to verify the influence of superplasticizer and air entrainment admixtures (AEs) in the electrical resistivity of concrete.

Design/methodology/approach

Ten different types of concrete have been studied. Three levels of superplasticizer and air AEs have been used (0.20, 0.35 and 0.50 per cent). Concrete samples were cast and the electrical resistivity was monitored at the ages of 28, 63 and 91 days. Compressive strength and density tests have also been executed.

Findings

The superplasticizer admixture presented an optimal level of 0.35 per cent that significantly increased the electrical resistivity. The air AEs at the same dosage caused a considerable decrease in the electrical resistivity. The concrete with air AEs showed highest resistivity/MPa ratio.

Research limitations/implications

The results should be carefully extrapolated for other materials and admixtures.

Practical implications

The usage of chemicals admixture in concrete is extremely common nowadays. However, only a few authors have studied the impact of such materials on the concrete’s electrical resistivity. Since many other researchers have already correlated electrical resistivity with other concrete’s properties, such as strength, setting time and corrosion probability, it is important to better understand how superplasticizers and air-entraining agents, for instance, impact the resistivity.

Originality/value

The vast majority of studies only tested the resistivity of cement paste or mortar and usually for short period of time (up to 28 days), which seems not to be adequate since the cement reaction continues after that period. This paper fills this gap and studied the impact of admixture on concrete and for a period of 91 days.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 April 2014

Shamsad Ahmad

The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the…

Abstract

Purpose

The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the experimental data generated by measuring corrosion current density of reinforced concrete specimens subjected to chloride-induced corrosion at different levels of concrete resistivity.

Design/methodology/approach

To generate concrete resistivity vs corrosion current density data in a wide range, ten reinforced concrete specimens were prepared and allowed to corrode under severe chloride exposure. After significantly corroding the specimens, they were removed from the chloride exposure and were subjected to different moisture levels for achieving variation in the resistivity of concrete so that reasonably good number of resistivity vs corrosion rate data can be obtained. Resistivity and corrosion current density tests were conducted for all the ten specimens and their values were measured in wide ranges of 0.8-65 kΩ·cm and 0.08-11 μA/cm2, respectively.

Findings

Data generated through this study were utilized to obtain an empirical relationship between concrete resistivity and corrosion current density. The trend of results obtained using the empirical correlation model developed in the present study was in close agreement with that obtained using a theoretical model reported in literature.

Originality/value

The empirical correlation between concrete resistivity and reinforcement corrosion rate obtained under this work can be used for evaluation of reinforcement corrosion utilizing the resistivity values measured non-destructively.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 March 1987

M. Hrovat and F. Jan

Thick film resistor materials' microstructure, sheet resistivity and temperature coefficient of resistivity during the firing process in the temperature range between 350°C and…

Abstract

Thick film resistor materials' microstructure, sheet resistivity and temperature coefficient of resistivity during the firing process in the temperature range between 350°C and 950°C were investigated. During firing the sheet resistivities at first decrease because of evaporation and/or oxidation of the organic phase and later, at higher firing temperatures, increase due to sintering of the glass phase and the rearrangement of conductive particles. The TCR is negative for firing temperatures below 450°C, due to the presence of partly pyrolysed organic vehicle, and positive for higher firing temperatures.

Details

Microelectronics International, vol. 4 no. 3
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 2 January 2007

Y. Srinivasa Rao

The paper aims to study the variation of electrical properties like electrical resistivity and current noise of a polymer thick film resistor, namely, PVC‐graphite thick film…

Abstract

Purpose

The paper aims to study the variation of electrical properties like electrical resistivity and current noise of a polymer thick film resistor, namely, PVC‐graphite thick film resistor, with parameters such as volume fraction, grain size, temperature and high voltage.

Design/methodology/approach

A model is proposed to explain the observed variations, which assumes that the texture of the polymer thick film resistor consists of insulator granules coated with conducting particles and also having cavities. The resistivity of these resistors is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle with its neighbors.

Findings

The variation of resistivity with temperature and high voltage is explained with the help of the model and it is attributed to the change in contact area and number of contacts. The current noise of these resistors is controlled mainly by the average relative resistance fluctuations between the conducting particles and the number of contacts each particle with its neighbors.

Originality/value

The variation of current noise with high voltage has also been explained with the help of this model and it is attributed to the change in number of conducting particles and conducting layers.

Details

Microelectronics International, vol. 24 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 27 January 2020

Raghu Babu U. and Kondraivendhan B.

Besides with a large amount of Na+ and Cl ions in seawater, the presence of Mg+2 and SO4−2 ions builds more complex corrosion mechanism. This paper aims to investigate the…

Abstract

Purpose

Besides with a large amount of Na+ and Cl ions in seawater, the presence of Mg+2 and SO4−2 ions builds more complex corrosion mechanism. This paper aims to investigate the corrosion of embedded reinforcement in concrete with the environment of both Cl and SO4−2 anions associated Mg+2 cation.

Design/methodology/approach

The concrete specimens were prepared by using ordinary Portland cement (OPC), and OPC blended with metakaolin (MK) for water to cementitious material ratio (w/cm) 0.48 and 0.51. The concrete mixes were contaminated with the addition of MgCl2 alone and combined MgCl2 and MgSO4 in mix water. Reinforcement corrosion was evaluated by half-cell potential and corrosion current densities (Icorr) at regular intervals. Moreover, the influence of cementitious material type, salt type and w/cm ratio on electrical resistivity of concrete was also investigated. The statistical models were developed for electrical resistivity as a function of calcium to aluminium content ratio, compressive strength, w/cm ratio and age of concrete.

Findings

Although the corrosion initiation time increases in the concomitant presence of MgSO4 and MgCl2 as internal source compared to MgCl2, Icorr values are higher in both OPC and MK blended concrete. However, electrical resistivity decreased with addition of MgSO4. MK blended concrete performed better with increased resistivity, corrosion initiation time and decreased Icorr values.

Originality/value

This study reports statistical distributions for scattered Icorr of rebar in different concrete mixtures. Stepwise regression models were developed for resistivity by considering the interactions among different variables, which would help to estimate the resistivity through basic information.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 July 2016

R. Durairaj, Lim Seow Pheng and Liew Jian Ping

The purpose of this paper is to characterise the electrical and mechanical properties of multiwall carbon nanotubes (MWCNTs)-based isotropic conductive adhesives (ICAs). The paper…

Abstract

Purpose

The purpose of this paper is to characterise the electrical and mechanical properties of multiwall carbon nanotubes (MWCNTs)-based isotropic conductive adhesives (ICAs). The paper also compares the electrical and mechanical performance of MWCNTs-based ICAs with silver flakes and silver nanoparticles-based ICAs.

Design/methodology/approach

The ICAs were formulated with dyglycidyl ether bisphenol A epoxy resin and conductive fillers such as silver flakes, silver nanoparticles and MWCNTs. The four-point probe is used to measure the bulk resistivity of the ICAs.

Findings

The results from the study showed that the percolation threshold of the MWCNTs-based ICAs is 1.5 Wt.%. At 3 Wt.%, the drop in bulk resistivity is lower than the conventional ICAs. The addition of silver nanoparticles increased the overall bulk resistivity of the system. The mechanical properties improved with the introduction of carbon nanotubes into the silver flakes–epoxy system.

Practical implications

The results from bulk resistivity and mechanical properties of the MWCNTs could help to formulate MWCNTs-based ICAs with optimum weight fraction.

Originality/value

The paper demonstrates that the addition of MWCNTs to the silver-based ICAs will enhance their mechanical and electrical conductivity. In addition, the optimum weight percentage is also determined, which shows a bulk resistivity value lower along with improved mechanical property with the conventional ICA system.

Article
Publication date: 2 April 2020

Delfim Soares, Manuel Sarmento, Daniel Barros, Helder Peixoto, Hugo Figueiredo, Ricardo Alves, Isabel Delgado, José C. Teixeira and Fátima Cerqueira

This study aims to investigate the effect of bismuth addition (up to 30 Wt%) on the microstructure and electrical conductivity of a commercial lead-free alloy (SAC405) near the…

Abstract

Purpose

This study aims to investigate the effect of bismuth addition (up to 30 Wt%) on the microstructure and electrical conductivity of a commercial lead-free alloy (SAC405) near the solder/substrate soldered joint. The system under study is referred in this work as (SAC405 + xBi)/Cu, as Cu is the selected substrate in which the solder was casted. The electrical resistivity of this system was investigated, considering Bi addition effect on the local microstructure and chemical composition gradients within that zone.

Design/methodology/approach

Solder joints between Cu substrate and SAC405 alloy with different levels of Bi were produced. The electrical conductivity along the obtained solder/substrate interface was measured by four-point probe method. The microstructure and chemical compositions were evaluated by scanning electron microscopy/energy dispersive spectroscopy analysis.

Findings

Two different electrical resistivity zones were identified within the solder interface copper substrate/solder alloy. At the first zone (from intermetallic compound [IMC] until approximately 100 μm) the increase of the electrical resistivity is gradual from the substrate to the solder side. This is because of the copper substrate diffusion, which established a chemical composition gradient near the IMC layer. At the second zone, electrical resistivity becomes much higher and is mainly dependent on the Bi content of the solder alloy. In both identified zones, electrical resistivity is affected by its microstructure, which is dependent on Cu and Bi content and solidification characteristics.

Originality/value

A detailed characterization of the solder/substrate zone, in terms of electrical conductivity, was done with the definition of two variation zones. With this knowledge, a better definition of processing parameters and in-service soldered electronic devices behavior can be achieved.

Details

Soldering & Surface Mount Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 1000