Search results

1 – 10 of 747
Article
Publication date: 19 April 2024

Mahesh Gaikwad, Suvir Singh, N. Gopalakrishnan, Pradeep Bhargava and Ajay Chourasia

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the…

Abstract

Purpose

This study investigates the impact of the fire decay phase on structural damage using the sectional analysis method. The primary objective of this work is to forecast the non-dimensional capacity parameters for the axial and flexural load-carrying capacity of reinforced concrete (RC) sections for heating and the subsequent post-heating phase (decay phase) of the fire.

Design/methodology/approach

The sectional analysis method is used to determine the moment and axial capacities. The findings of sectional analysis and heat transfer for the heating stage are initially validated, and the analysis subsequently proceeds to determine the load capacity during the fire’s heating and decay phases by appropriately incorporating non-dimensional sectional and material parameters. The numerical analysis includes four fire curves with different cooling rates and steel percentages.

Findings

The study’s findings indicate that the rate at which the cooling process occurs after undergoing heating substantially impacts the axial and flexural capacity. The maximum degradation in axial and flexural capacity occurred in the range of 15–20% for cooling rates of 3 °C/min and 5 °C/min as compared to the capacity obtained at 120 min of heating for all steel percentages. As the fire cooling rate reduced to 1 °C/min, the highest deterioration in axial and flexural capacity reached 48–50% and 42–46%, respectively, in the post-heating stage.

Research limitations/implications

The established non-dimensional parameters for axial and flexural capacity are limited to the analysed section in the study owing to the thermal profile, however, this can be modified depending on the section geometry and fire scenario.

Practical implications

The study primarily focusses on the degradation of axial and flexural capacity at various time intervals during the entire fire exposure, including heating and cooling. The findings obtained showed that following the completion of the fire’s heating phase, the structural capacity continued to decrease over the subsequent post-heating period. It is recommended that structural members' fire resistance designs encompass both the heating and cooling phases of a fire. Since the capacity degradation varies with fire duration, the conventional method is inadequate to design the load capacity for appropriate fire safety. Therefore, it is essential to adopt a performance-based approach while designing structural elements' capacity for the desired fire resistance rating. The proposed technique of using non-dimensional parameters will effectively support predicting the load capacity for required fire resistance.

Originality/value

The fire-resistant requirements for reinforced concrete structures are generally established based on standard fire exposure conditions, which account for the fire growth phase. However, it is important to note that concrete structures can experience internal damage over time during the decay phase of fires, which can be quantitatively determined using the proposed non-dimensional parameter approach.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 25 January 2023

Sudev Dutta and Payal Bansal

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any…

Abstract

Purpose

The purpose of this review paper is to outline the parachute materials and its behavior. To enhance parachute life, it is highly desirable to consider the commercial angle for any parachute manufacturing industry and its components under varying operational conditions. Hence, the knowledge of various textile materials and operational conditions which contributes the parachute strength and durability will be helpful for industries/researchers.

Design/methodology/approach

This section is not applicable for a review paper.

Findings

Parachute is a material used in numerous real-time applications such as man-drop, cargo delivery, aircraft recovery and aircraft decelerator which drastically reduces human efforts and time. However, each application requires a unique design and fabric selection to achieve the area of drag needed and the terminal velocity of the parachute material while in flight. For designing a man-drop parachute, the most critical parameters are weight and strength which must be considered during manufacturing. The army person uses the man-drop parachute, which must be as light as possible.

Originality/value

This paper is an original review work and will be helpful for parachute manufacturers/researchers to enhance the life of parachutes with improved functionality.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 December 2023

Fadwa M. Al Chamaa, Ahmad El Ghor and Elie Hantouche

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Abstract

Purpose

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Design/methodology/approach

A total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.

Findings

The results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.

Originality/value

This study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 December 2023

Balamurali Kanagaraj, N. Anand, Johnson Alengaram and Diana Andrushia

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of…

Abstract

Purpose

The present work focuses on evaluating the physical and mechanical characteristics of geopolymer concrete (GPC) by replacing the sodium silicate waste (SSW) in place of traditional river sand. The aim is to create eco-friendly concrete that mitigates the depletion of conventional river sand and conserves natural resources. Additionally, the study seeks to explore how the moisture content of filler materials affects the performance of GPC.

Design/methodology/approach

SSW obtained from the sodium silicate industry was used as filler material in the production of GPC, which was cured at ambient temperature. Instead of the typical conventional river sand, SSW was substituted at 25 and 50% of its weight. Three distinct moisture conditions were applied to both river sand and SSW. These conditions were classified as oven dry (OD), air dry (AD) and saturated surface dry (SSD).

Findings

As the proportion of SSW increased, there was a decrease in the slump of the GPC. The setting time was significantly affected by the higher percentage of SSW. The presence of angular-shaped SSW particles notably improved the compressive strength of GPC when replacing a portion of the river sand with SSW. When exposed to elevated temperatures, the performance of the GPC with SSW exhibited similar behavior to that of the mix containing conventional river sand, but it demonstrated a lower residual strength following exposure to elevated temperatures.

Originality/value

Exploring the possible utilization of SSW as a substitute for river sand in GPC, and its effects on the performance of the proposed mix. Analyzing, how varying moisture conditions affect the performance of GPC containing SSW. Evaluating the response of the GPC with SSW exposed to elevated temperatures in contrast to conventional river sand.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 21 July 2023

Jinhua Sun

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance…

Abstract

Purpose

Steel-reinforced concrete-filled steel tubular (SRCFST) columns have been increasingly popular in engineering practice for the columns' excellent seismic and fire performance. Significant design progress guidance has been made through continuous numerical and experimental research in recent years. This paper tested and analysed the residual loading capacity of SRCFST columns under axial loading after experiencing non-uniform ISO-834 standard fire.

Design/methodology/approach

The experimental research covered the main parameter of heating conditions, 1-side and 2-side fire, through two specimens. Two specimens were heated and loaded simultaneously in the furnace for 240 min. After cooling, the columns were moved to the hydraulic loading system and loaded to failure to determine the columns' residual capacity.

Findings

The experimental results indicated that the non-uniform heating area plays an essential role in the overall performance of SRCFST columns, the increasing heating area of columns results in lower residual loading capacity and stiffness. The SRCFST columns still had a high loading capacity after heating and loading in the fire.

Originality/value

The comparison of experimental data against design results showed that the design method generated a 16% safety margin for S2H4 and a 39% safety margin for S1H4.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 April 2024

Kryzelle M. Atienza, Apollo E. Malabanan, Ariel Miguel M. Aragoncillo, Carmina B. Borja, Marish S. Madlangbayan and Emel Ken D. Benito

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that…

Abstract

Purpose

Existing deterministic models that predict the capacity of corroded reinforced concrete (RC) beams have limited applicability because they were based on accelerated tests that induce general corrosion. This research gap was addressed by performing a combined numerical and statistical analysis on RC beams, subjected to natural corrosion, to achieve a much better forecast.

Design/methodology/approach

Data of 42 naturally corroded beams were collected from the literature and analyzed numerically. Four constitutive models and their combinations were considered: the elastic-semi-plastic and elastic-perfectly-plastic models for steel, and two tensile models for concrete with and without the post-cracking stresses. Meanwhile, Popovics’ model was used to describe the behavior of concrete under compression. Corrosion coefficients were developed as functions of corrosion degree and beam parameters through linear regression analysis to fit the theoretical moment capacities with test data. The performance of the coefficients derived from different combinations of constitutive laws was then compared and validated.

Findings

The results showed that the highest accuracy (R2 = 0.90) was achieved when the tensile response of concrete was modeled without the residual stresses after cracking and the steel was analyzed as an elastic-perfectly-plastic material. The proposed procedure and regression model also showed reasonable agreement with experimental data, even performing better than the current models derived from accelerated tests and traditional procedures.

Originality/value

This study presents a simple but reliable approach for quantifying the capacity of RC beams under more realistic conditions than previously reported. This method is simple and requires only a few variables to be employed. Civil engineers can use it to obtain a quick and rough estimate of the structural condition of corroding RC beams.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 23 April 2024

Naveen Srinivas Madugula, Yogesh Kumar, Vimal K.E.K and Sujeet Kumar

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six…

Abstract

Purpose

The purpose of this paper is to improve the productivity and quality of the wire arc additive manufacturing process by benchmarking the strategies from the selected six strategies, namely, heat treatment process, inter pass cooling process, inter pass cold rolling process, peening process, friction stir processing and oscillation process.

Design/methodology/approach

To overcome the lack of certainty associated with correlations and relationships in quality functional deployment, fuzzy numbers have been integrated with the quality functional deployment framework. Twenty performance measures have been identified from the literature under five groups, namely, mechanical properties, physical properties, geometrical properties, cost and material properties. Using house of quality weights are allocated to performance measures and groups, relationships are established between performance measures and strategies, and correlations are assigned between strategies. Finally, for each strategy, relative importance, score and crisp values are calculated.

Findings

Inter pass cold rolling process strategy is computed with the highest crisp value of 15.80 which is followed by peening process, heat treatment process, friction stir processing, inter pass cooling process,] and oscillation process strategy.

Originality/value

To the best of the authors’ knowledge, there has been no research in the literature that analyzes the strategies to improve the quality and productivity of the wire arc additive manufacturing process.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 14 July 2023

Sweety Poornima Rau Merugu and Manjunath Y.M.

This study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional…

Abstract

Purpose

This study aims at designing consistent and durable concrete by making use of waste materials. An investigation has been carried out to evaluate the performance of conventional and optimal concrete (including 5% GP) at high temperatures for different exposure times.

Design/methodology/approach

An experimental work is carried out to compare the conventional and optimal concrete with respect to weight loss, mechanical strength characteristics (compressive, tensile and flexural) after exposed to 100, 200 and 300 °C with 1, 2 and 3 h duration of exposure followed by cooling in furnace for 24 h and then air cooling.

Findings

The workability of granite powder modified concrete decreases as percentage of replacement increases. Compressive, tensile and flexural strengths all increased at 100 °C when compared to strength characteristics at normal temperature, regardless of the exposure conditions, and there was no weight loss noticed. For 200 and 300 °C, the strengths were decreased compared to normal temperature and an elevated temperature of 100 °C, as weight loss of concrete specimens are observed to be decreased at these temperatures. So, the optimum elevated temperature can be concluded as 100 °C.

Originality/value

Incorporating pozzolanic binder (granite powder) as cement replacement subjecting to elevated temperatures in an electric furnace is the research gap in this area. Many of the works were carried out replacing GP for fine aggregate at normal temperatures and not at elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 747