Search results

1 – 10 of 790
Article
Publication date: 2 November 2015

Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli

The purpose of this paper is to optimize the frictional input parameters related to the yarn and woven fabric samples. Indeed, using metaheuristic techniques for optimization, it…

Abstract

Purpose

The purpose of this paper is to optimize the frictional input parameters related to the yarn and woven fabric samples. Indeed, using metaheuristic techniques for optimization, it helps to attempt the best quality appearance of garment, by analysing their effects and relationships with the bagging behaviour of tested fabrics before and after bagging test. Using metaheuristic techniques allows us to select widely the minimal residual bagging properties and the optimized inputs to adjust them for this goal.

Design/methodology/approach

The metaheuristic methods were applied and discussed. Hence, the genetic algorithms (GA) and ant colony optimization (ACO) technique results are compared to select the best residual bagging behaviour and their correspondent parameters. The statistical analysis steps were implemented using Taguchi experimental design thanks to Minitab 14 software. The modelling methodology analysed in this paper deals with the linear regression method application and analysis to prepare to the optimization steps.

Findings

The regression results are essential for evaluate the effectiveness of the relationships founded between inputs and outputs parameters and for their optimizations in the design of interest.

Practical implications

This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to optimize the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behaviour due to bagging phenomenon can be analysed and optimized accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones can fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help to understand why residual bagging behaviour remained after garment uses due to the internal stress and excessive extensions.

Originality/value

Until now, there is no work dealing with the optimization of bagging behaviour using metaheuristic techniques. Indeed, all investigations are focused on the evaluation and theoretical modelling based on the multi linear regression analysis. It is notable that the metaheuristic techniques such as ACO and GA are used to optimize some difficult problems but not yet in the textile field excepting some studies using the GA. Besides, there is no sufficiently information to evaluate, predict and optimize the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behaviour. Several and different denim fabrics within their different characteristics are investigated to widen the experimental analysis and thus to generalize the results in the experimental design of interest.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 April 2015

Mouna Gazzah, Boubaker Jaouachi and Faouzi Sakli

The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining…

Abstract

Purpose

The purpose of this paper is to predict the bagging recovery velocity of bagged denim fabric samples. Hence, the authors attempt to carry out a model highlighting and explaining the impact of some considered frictional parameters such as yarn-to-yarn friction expressed as weft yarn rigidity parameter and metal-to-fabric friction expressed by mean frictional coefficient parameter.

Design/methodology/approach

The statistical analysis steps were implemented using experimental design type Taguchi and thanks to Minitab 14 software. The modeling methodology analyzed in this paper deals with the linear regression method application and analysis. The predictive power of the obtained model is evaluated by comparing the estimated recovery velocity (theoretical) with the actual values. These comparative values are measured after the bagging test and during the relaxation time of the denim fabric samples. The regression coefficient (R2) values as well as the statistical tests (p-values, analysis of variance results) were investigated, discussed and analyzed to improve the findings.

Findings

According to the statistical results given by Taguchi analysis findings, the regression model is very significant (p-regression=0.04 and R2=97 percent) which explains widely the possibility of bagging behavior prediction in the studied experimental field of interest. Indeed the variation (the increase or the decrease) of the frictional input parameters values caused, as a result, the variation of the whole appearance and the shape of the bagged zone expressed by the residual bagging height variations. In spite of their similar compositions and characteristics, the woven bagged fabrics presented differently behaviors in terms of the bagging recovery and kinetic velocity values. After relaxation times which are not the same and relative to different fabric samples, it may be concluded that bagging behavior remained function of the internal frictional stresses, especially yarn-to-yarn and metal-to-fabric ones.

Practical implications

This study is interesting for denim consumers and industrial applications during long and repetitive uses. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. In fact, in terms of the importance to the industrial producers of the materials it helps to provide a first step in an attempt for a better understanding of the stresses involved in bagging of woven fabrics in general and denim fabrics particularly due to important frictional input contributions. They provide the basis for the development of fabrics that can withstand bagging problems. This research may also put forward improved methods of measuring bagginess as function of frictional parameters in order to optimize (minimize) their effects on the bagging behaviors before and after repetitive uses. These experimental, statistical and theoretical findings may be used to predict bagginess of fabrics based on their properties and prevent industrial from the most significant and influential inputs which should be adjusted accurately. This work allows industrial, also, to make more attention, in case of a high-quality level to ensure, to optimize and review yarn behaviors used to produce fabrics against drastic solicitations and minimize frictions forms during experimental spinning and weaving processes.

Originality/value

Until now, there is no sufficient information to evaluate and predict the effect of the yarn-to-yarn friction as well as metal-to-yarn one on the residual bagging behavior. Besides, there is no work that deals with the kinetic recovery evolution as function of frictional inputs to explain accurately the bagging behavior evolution during relaxation time. Therefore, this present work is to investigate and model the residual bagging recovery velocity after bagging test as function of the frictional input parameters of both denim yarn and fabric samples (expressed by the friction caused due to contact from conformator to fabric).

Details

International Journal of Clothing Science and Technology, vol. 27 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 November 2015

Mouna Gazzah, Boubaker Jaouachi, Laurence Schacher, Dominique Charles Adolphe and Faouzi Sakli

The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability…

Abstract

Purpose

The purpose of this paper is to predict the appearance of denim fabric after repetitive uses judging the denim cloth behavior and performance in viewpoint of bagging ability. Hence, it attempts to carry out the significant inputs and outputs that have an influence on the bagging behaviors using the Principal Component Analysis (PCA) technique. In this study, the Kawabata Evaluation System parameters such as the frictional characteristics, the bending, compression, tensile and shear parameters are investigated to propose a model highlighting and explaining their impacts on the different bagging properties. To improve the obtained results, the selected significant inputs are also analyzed within their bagging properties using Taguchi experimental design. The linear regressive models prove the effectiveness of the PCA method and the obtained findings.

Design/methodology/approach

To investigate the mechanical properties and their contributions on the bagging characteristics, some denim fabrics were collected and measured thanks to the Kawabata evaluation systems (KES-FB1, KES-FB2, KES-FB3 and KES-FB4). These bagging properties were further analyzed applying the method of PCA to acquire factor patterns that indicate the most important fabric properties for characterizing the bagging behaviors of different studied denim fabric samples. An experimental design type Taguchi was, hence, applied to improve the results. Regarding the obtained results, it may be concluded that the PCA method remained a powerful and flawless technique to select the main influential inputs and significant outputs, able to define objectively the bagging phenomenon and which should be considered from the next researches.

Findings

According to the results, there are good relationships between the Kawabata input parameters and the analyzed bagging properties of studied denim fabrics. Indeed, thanks to the PCA, it is probably easy to reduce the number of the influent parameters for three reasons. First, applying this technique of selection can help to select objectively the most influential inputs which affect enormously the bagged fabrics. Second, knowing these significant parameters, the prediction of denim fabric bagging seems fruitful and can undoubtedly help researchers explain widely this complex phenomenon. Third, regarding the findings mentioned, it seems that the prevention of this aesthetic phenomenon appearing in some specific zones of denim fabrics will be more and more accurate.

Practical implications

This study is interesting for denim consumers and industrial applications during long and repetitive uses. Undoubtedly, the denim garments remained the largely used and consumed, hence, this particularity proves the necessity to study it in order to evaluate the bagging phenomenon which occurs as function of number of uses. Although it is fashionable to have bagging, the denim fabric remains, in contrast with the worsted ones, the most popular fabric to produce garments. Moreover, regarding this characteristic, the large uses and the acceptable value of denim fabrics, their aesthetic appearance behavior due to bagging phenomenon can be analyzed accurately because compared to worsted fabrics, they have a high value and the repetitive tests to investigate widely bagged zones may fall the industrial. The paper has practical implications in the clothing appearance and other textile industry, especially in the weaving process when friction forms (yarn-to-yarn, yarn-to-metal frictions) and stresses are drastic. This can help understanding why residual bagging behavior remained after garment uses due to the internal stress and excessive extensions. Regarding the selected influential inputs and outputs relative to bagging behaviors, there are some practical implications that have an impact on the industrial and researchers to study objectively the occurrence of this aesthetic phenomenon. Indeed, this study discusses the significance of the overall inputs; their contributions on the denim fabric bagged zones aims to prevent their ability to appear after uses. Moreover, the results obtained regarding the fabric mechanical properties can be useful to fabric and garment producers, designers and consumers in specifying and categorizing denim fabric products, insuring more denim cloth use and controlling fabric value. For applications where the subjective view of the consumer is of primary importance, the KES-FB system yields data that can be used for evaluating fabric properties objectively and prejudge the consumer satisfaction in viewpoint of the bagging ability. Therefore, this study shows that by measuring shear, tensile and frictional parameters of KES-FB, it may be possible to evaluate bagging properties. However, it highlights the importance and the significance of some inputs considered influential or the contrast (non-significant) in other researches.

Originality/value

This work presents the first study analyzing the bagged denim fabric applying the PCA technique to remove the all input parameters which are not significant. Besides, it deals with the relationship developed between the mechanical fabric properties (tensile, shear and frictional stresses) and the bagging properties behavior. To improve these obtained relationships, for the first time, the regression technique and experimental design type Taguchi analysis were both applied. Moreover, it is notable to mention that the originality of this study is to let researchers and industrials investigate the most influential inputs only which have a bearing on the bagging phenomenon.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 October 2004

R. Abghari, S. Shaikhzadeh Najar, M. Haghpanahi and M. Latifi

To investigate the relation of in‐plane fabric tensile properties with woven fabrics bagging behavior, a new test method was developed and a real time data acquisition and strain…

Abstract

To investigate the relation of in‐plane fabric tensile properties with woven fabrics bagging behavior, a new test method was developed and a real time data acquisition and strain gauge technique were used. The bagging procedure was carried out while the woven fabric tensile deformations along warp and weft directions were measured. The fabric bagging behavior was characterized by bagging resistance, bagging fatigue, residual bagging height and residual bagging hysteresis. The experimental results show that the bagging load, work, hysteresis, residual hysteresis and fatigue are highly linearly correlated with corresponding parameters in warp and weft directions. An empirical relationship obtained between residual bagging height and bagging fatigue and resistance (R2=0.83) suggests that the proposed new test method is able to evaluate bagging behavior of fabrics.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2014

M. Gazzah and B. Jaouachi

This work deals with the evolution of the residual bagging height of knitted samples. In comparing the results after a fabric bagging test, it may be concluded that the behaviour

Abstract

This work deals with the evolution of the residual bagging height of knitted samples. In comparing the results after a fabric bagging test, it may be concluded that the behaviour of the sample length is an influential parameter which widely reflects the anisotropy of knitted structures. Hence, it is clear that the sample length does not exhibit the same behaviour in each knitted fabric zone which generally explains the impartial response after stress is applied. With regards to the different height values that the sample length presents in each measured part of the fabric, it may be concluded that there are several types of behaviours in the areas of bagging along the sample length. Moreover, it appears that there is a non uniform distribution of deformation after removing the stress. Therefore, internal stresses and deformations that cause different residual heights in the same sample accurately reflect and explain the anisotropic structure of the investigated knitted fabrics. In knowing that there is this non-uniform distribution of deformation, the input parameters also have considerable effects on the bending behaviour of the residual bagging. Indeed, when the yarn structure is changed, the residual bagging height changes too. Furthermore, our findings prove that elastic knitted fabrics accurately show a more minimal residual bagging height as opposed to non elastic fabrics in spite of the other input parameter values.

Details

Research Journal of Textile and Apparel, vol. 18 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Abstract

Details

Machine Learning and Artificial Intelligence in Marketing and Sales
Type: Book
ISBN: 978-1-80043-881-1

Article
Publication date: 7 November 2023

Christian Nnaemeka Egwim, Hafiz Alaka, Youlu Pan, Habeeb Balogun, Saheed Ajayi, Abdul Hye and Oluwapelumi Oluwaseun Egunjobi

The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning…

66

Abstract

Purpose

The study aims to develop a multilayer high-effective ensemble of ensembles predictive model (stacking ensemble) using several hyperparameter optimized ensemble machine learning (ML) methods (bagging and boosting ensembles) trained with high-volume data points retrieved from Internet of Things (IoT) emission sensors, time-corresponding meteorology and traffic data.

Design/methodology/approach

For a start, the study experimented big data hypothesis theory by developing sample ensemble predictive models on different data sample sizes and compared their results. Second, it developed a standalone model and several bagging and boosting ensemble models and compared their results. Finally, it used the best performing bagging and boosting predictive models as input estimators to develop a novel multilayer high-effective stacking ensemble predictive model.

Findings

Results proved data size to be one of the main determinants to ensemble ML predictive power. Second, it proved that, as compared to using a single algorithm, the cumulative result from ensemble ML algorithms is usually always better in terms of predicted accuracy. Finally, it proved stacking ensemble to be a better model for predicting PM2.5 concentration level than bagging and boosting ensemble models.

Research limitations/implications

A limitation of this study is the trade-off between performance of this novel model and the computational time required to train it. Whether this gap can be closed remains an open research question. As a result, future research should attempt to close this gap. Also, future studies can integrate this novel model to a personal air quality messaging system to inform public of pollution levels and improve public access to air quality forecast.

Practical implications

The outcome of this study will aid the public to proactively identify highly polluted areas thus potentially reducing pollution-associated/ triggered COVID-19 (and other lung diseases) deaths/ complications/ transmission by encouraging avoidance behavior and support informed decision to lock down by government bodies when integrated into an air pollution monitoring system

Originality/value

This study fills a gap in literature by providing a justification for selecting appropriate ensemble ML algorithms for PM2.5 concentration level predictive modeling. Second, it contributes to the big data hypothesis theory, which suggests that data size is one of the most important factors of ML predictive capability. Third, it supports the premise that when using ensemble ML algorithms, the cumulative output is usually always better in terms of predicted accuracy than using a single algorithm. Finally developing a novel multilayer high-performant hyperparameter optimized ensemble of ensembles predictive model that can accurately predict PM2.5 concentration levels with improved model interpretability and enhanced generalizability, as well as the provision of a novel databank of historic pollution data from IoT emission sensors that can be purchased for research, consultancy and policymaking.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 7 July 2020

Jiaming Liu, Liuan Wang, Linan Zhang, Zeming Zhang and Sicheng Zhang

The primary objective of this study was to recognize critical indicators in predicting blood glucose (BG) through data-driven methods and to compare the prediction performance of…

Abstract

Purpose

The primary objective of this study was to recognize critical indicators in predicting blood glucose (BG) through data-driven methods and to compare the prediction performance of four tree-based ensemble models, i.e. bagging with tree regressors (bagging-decision tree [Bagging-DT]), AdaBoost with tree regressors (Adaboost-DT), random forest (RF) and gradient boosting decision tree (GBDT).

Design/methodology/approach

This study proposed a majority voting feature selection method by combining lasso regression with the Akaike information criterion (AIC) (LR-AIC), lasso regression with the Bayesian information criterion (BIC) (LR-BIC) and RF to select indicators with excellent predictive performance from initial 38 indicators in 5,642 samples. The selected features were deployed to build the tree-based ensemble models. The 10-fold cross-validation (CV) method was used to evaluate the performance of each ensemble model.

Findings

The results of feature selection indicated that age, corpuscular hemoglobin concentration (CHC), red blood cell volume distribution width (RBCVDW), red blood cell volume and leucocyte count are five most important clinical/physical indicators in BG prediction. Furthermore, this study also found that the GBDT ensemble model combined with the proposed majority voting feature selection method is better than other three models with respect to prediction performance and stability.

Practical implications

This study proposed a novel BG prediction framework for better predictive analytics in health care.

Social implications

This study incorporated medical background and machine learning technology to reduce diabetes morbidity and formulate precise medical schemes.

Originality/value

The majority voting feature selection method combined with the GBDT ensemble model provides an effective decision-making tool for predicting BG and detecting diabetes risk in advance.

Article
Publication date: 26 September 2022

Christian Nnaemeka Egwim, Hafiz Alaka, Oluwapelumi Oluwaseun Egunjobi, Alvaro Gomes and Iosif Mporas

This study aims to compare and evaluate the application of commonly used machine learning (ML) algorithms used to develop models for assessing energy efficiency of buildings.

Abstract

Purpose

This study aims to compare and evaluate the application of commonly used machine learning (ML) algorithms used to develop models for assessing energy efficiency of buildings.

Design/methodology/approach

This study foremostly combined building energy efficiency ratings from several data sources and used them to create predictive models using a variety of ML methods. Secondly, to test the hypothesis of ensemble techniques, this study designed a hybrid stacking ensemble approach based on the best performing bagging and boosting ensemble methods generated from its predictive analytics.

Findings

Based on performance evaluation metrics scores, the extra trees model was shown to be the best predictive model. More importantly, this study demonstrated that the cumulative result of ensemble ML algorithms is usually always better in terms of predicted accuracy than a single method. Finally, it was discovered that stacking is a superior ensemble approach for analysing building energy efficiency than bagging and boosting.

Research limitations/implications

While the proposed contemporary method of analysis is assumed to be applicable in assessing energy efficiency of buildings within the sector, the unique data transformation used in this study may not, as typical of any data driven model, be transferable to the data from other regions other than the UK.

Practical implications

This study aids in the initial selection of appropriate and high-performing ML algorithms for future analysis. This study also assists building managers, residents, government agencies and other stakeholders in better understanding contributing factors and making better decisions about building energy performance. Furthermore, this study will assist the general public in proactively identifying buildings with high energy demands, potentially lowering energy costs by promoting avoidance behaviour and assisting government agencies in making informed decisions about energy tariffs when this novel model is integrated into an energy monitoring system.

Originality/value

This study fills a gap in the lack of a reason for selecting appropriate ML algorithms for assessing building energy efficiency. More importantly, this study demonstrated that the cumulative result of ensemble ML algorithms is usually always better in terms of predicted accuracy than a single method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 8 September 2021

Odey Alshboul, Ali Shehadeh, Maha Al-Kasasbeh, Rabia Emhamed Al Mamlook, Neda Halalsheh and Muna Alkasasbeh

Heavy equipment residual value forecasting is dynamic as it relies on the age, type, brand and model of the equipment, ranking condition, place of sale, operating hours and other…

Abstract

Purpose

Heavy equipment residual value forecasting is dynamic as it relies on the age, type, brand and model of the equipment, ranking condition, place of sale, operating hours and other macroeconomic gauges. The main objective of this study is to predict the residual value of the main types of heavy construction equipment. The residual value of heavy construction equipment is predicted via deep learning (DL) and machine learning (ML) approaches.

Design/methodology/approach

Based on deep and machine learning regression network integrated with data mining, random forest (RF), decision tree (DT), deep neural network (DNN) and linear regression (LR)-based modeling decision support models are developed. This research aims to forecast the residual value for different types of heavy construction equipment. A comprehensive investigation of publicly accessible auction data related to various types and categories of construction equipment was utilized to generate the model's training and testing datasets. In total, four performance metrics (i.e. the mean absolute error (MAE), mean squared error (MSE), the mean absolute percentage error (MAPE) and coefficient of determination (R2)) were used to measure and compare the developed algorithms' accuracy.

Findings

The developed algorithm's efficiency has been demonstrated by comparing the deep and machine learning predictions with real residual value. The accuracy of the results obtained by different proposed modeling techniques was comparable based on the performance evaluation metrics. DT shows the highest accuracy of 0.9111 versus RF with an accuracy of 0.8123, followed by DNN with an accuracy of 0.7755 and the linear regression with an accuracy of 0.5967.

Originality/value

The proposed novel model is designed as a supportive tool for construction project managers for equipment selling, purchasing, overhauling, repairing, disposing and replacing decisions.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 790