Search results

1 – 10 of over 1000
Article
Publication date: 20 May 2022

Esra Zeynep Yıldız and Oktay Pamuk

This paper suggests a new method for determining the sewing damage that occurs in single jersey fabrics based on the calculation of the needle hole area. This paper also aims to…

Abstract

Purpose

This paper suggests a new method for determining the sewing damage that occurs in single jersey fabrics based on the calculation of the needle hole area. This paper also aims to investigate the effects of material type, sewing parameters, and repeated washing cycles on sewing damage by using this method.

Design/methodology/approach

Six knitted fabrics, differing in structure and raw material, were produced. Samples were sewn using different sewing parameters, and they were subjected to ten washing cycles. Values of average needle hole area, an objective indicator of sewing damage, were calculated before and after repeated washing cycles using image analysis software and were evaluated statistically.

Findings

The results showed that the average needle hole area calculated via the image analysis software effectively estimates sewing damage as the results obtained were compatible with those stated in the literature. Furthermore, fabric type, sewing direction, sewing thread type, and needle size significantly affected the sewing damage. However, stitch density did not affect the sewing damage. When the effect of washing cycles was compared, it was seen that washing leads to an increase in sewing damage.

Originality/value

A review of the existing literature shows that no previous study has evaluated sewing damage using image analysis software. This study proposes a novel objective method to determine the sewing damage that occurs in knitted fabrics.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2006

L. Kou, J. Liang, S.D. Worley, J. Lee, R.M. Broughton and T.S. Huang

A new N-halamine precursor, 5-methyl-5-aminomethylhydantoin (AH), was synthesized. This N-halamine precursor can be coated onto cotton surfaces with the addition of the…

Abstract

A new N-halamine precursor, 5-methyl-5-aminomethylhydantoin (AH), was synthesized. This N-halamine precursor can be coated onto cotton surfaces with the addition of the crosslinking agent butanetetracarboxylic acid (BTCA) and rendered biocidal by exposure to halogen solutions either before or after curing the coating or material. Standard washing tests show that covalently bound AH/BTCA on the cotton swatches can survive repeated washing cycles. After 50 washing cycles, chlorinated cotton swatches had lost 98.7 % of oxidative Cl+, but after rechlorination, almost 43.5 % of Cl+ was regained. Biocidal tests indicated that the cotton swatches coated with chlorinated AH/BTCA were effective against Gram positive Staphylococcus aureus and Gram negative Escherichia coli.

Details

Research Journal of Textile and Apparel, vol. 10 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 March 2017

Janarthanan M. and Senthil Kumar M.

Medical textile is one aspect of technical textiles and it is classified according to performance and functional properties for hygienic and healthcare products. Seaweeds have…

Abstract

Purpose

Medical textile is one aspect of technical textiles and it is classified according to performance and functional properties for hygienic and healthcare products. Seaweeds have curative powers for curing most degenerative diseases. The paper aims to discuss these issues.

Design/methodology/approach

The present study focusses on the extraction of dyes from five seaweeds such as Ulva reticulata, Ulva lactuca, Sargassum wightii, Padina tetrastomatica and Acanthophora spicefera. The presence of bioactive compounds, antioxidant and antimicrobial properties of dye extracted from seaweeds was analysed. The dye extracted from green seaweed was applied on cotton fabric to obtain antimicrobial and other properties used to make non- implantable materials.

Findings

A maximum antioxidant inhibition percentage of 86.48+2.84 and a maximum antibacterial activity of 27 mm inhibition zone were obtained on the fabric treated with the dye extract from the Ulva lactuca seaweed. The physical properties such as tensile strength and tearing strength did not show much significant difference in untreated and treated fabric. The air permeability, water absorbency and wicking behaviour of treated fabric were reduced compared with untreated fabric. The washing and rubbing properties of treated fabric were very good after repeated washing.

Originality/value

This bioactive fabric has been used for non-implantable materials such as wound healing, face mask, surgical gowns and hygienic textiles in recent years.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 January 2018

M. Janarthanan and M. Senthil Kumar

Medical textiles is a vibrant emerging field in the area of technical textiles and its category is based on its performance and biofunctional properties for hygienic and health…

Abstract

Purpose

Medical textiles is a vibrant emerging field in the area of technical textiles and its category is based on its performance and biofunctional properties for hygienic and health care products. Biodegradable fabrics are widely used for medical textiles in recent years. Seaweeds provide a wide range of therapeutic possibilities for human beings both internally and externally due to the presence of bioactive compounds. The paper aims to discuss these issues.

Design/methodology/approach

This present study investigates the development of bioactive gauze fabric from Chaetomorpha linum seaweed/cotton blended fibres and also analysed the characteristics of Chaetomorpha linum seaweed/cotton blended gauze fabric and 100 per cent cotton gauze fabric. The effect of fibres on physical properties of fabric such as tensile strength, air permeability, wickability, water drop test and colour fastness properties were analysed. The antibacterial properties and antioxidant activity were assessed by DPPH radical scavenging, AATCC 100 and EN ISO 20645 test methods.

Findings

The experimental results indicate that the maximum antioxidant activity of 103.28±1.23 per cent inhibition was achieved at minimum concentration (500 µg/ml) of the blended fabric extract, and maximum antibacterial reduction of 95 per cent and zone of inhibition of about 26 mm were achieved in a blended fabric. The tensile strength, percentage of elongation and air permeability were more or less the same in both gauze fabrics. It is also found that Chaetomorpha linum seaweed/cotton blended gauze fabric exhibit better wickability and water absorbency properties than 100 per cent cotton gauze fabric. The colour fastness properties to washing and rubbing showed excellent results in the blended gauze fabric, and it is used for making wound dressing materials.

Originality/value

This bioactive gauze fabric was used for non-implantable materials such as wound healing, face mask, surgical gowns and hygienic textiles in recent years.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 November 2018

Ruhan Altun-Anayurt, Sennur Alay-Aksoy, Cemil Alkan, Sena Demirbag and M. Selda Tözüm

The purpose of this paper is to prepare microencapsulated phase change materials (PCMs) and apply them to cotton and wool fabrics for developing thermo-regulating fabrics.

Abstract

Purpose

The purpose of this paper is to prepare microencapsulated phase change materials (PCMs) and apply them to cotton and wool fabrics for developing thermo-regulating fabrics.

Design/methodology/approach

Microencapsulated n-hexadecane and n-octadecane with poly(methylmethacrylate-co-2-hydroxy ethyl methacrylate) shell was prepared. Microcapsules were fabricated using oil-in-water emulsion polymerization method. Their chemical structure, microstructure, thermal energy storage properties and thermal stability were analyzed by Fourier-transform infrared spectroscopy, polarized light microscope, differential scanning calorimeter and thermogravimetric analyzer, respectively. The mean particle size was tested by a particle sized instrument. The microcapsules were applied to the wool and cotton fabrics using pad-dry-cure method. The thermo-regulating property of the fabrics was evaluated using the T-History test. The distribution and durability of the microcapsules on the fabrics was investigated with scanning electron microscopy.

Findings

Spherical microcapsules with p(MMA-co-HEMA) shell and n-alkane core have been produced successfully. n-hexadecane in microcapsule solidifies at 14.8−15.6°C with the latent heat of 65.6−129.8 J/g and melts at 16.7−16.9°C with the latent heat of 67.6−136.9 J/g. Microencapsulated n-octadecane solidifies at 25.8−26.3°C with the latent heat of 74.1−106.2 J/g and melts at 26.8−27.4°C with the latent heat of 80.3−113.4 J/g. The microcapsules have enough thermal stability to the temperature of 150°C that was applied during the fixation of microcapsules on the fabric. The thermo-regulating effect of the microcapsule-incorporated fabrics has been proved by the T-history test.

Originality/value

PCM microcapsules with p(MMA-co-HEMA) shell and n-hexadecane and n-octadecane core have been produced and their usage to produce thermo-regulating textiles have been proved. To determine the thermo-regulating property of the fabrics treated with these new PCM microcapsules, a T-History system has been designed.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 May 2020

Tintu Jose Manicketh and Mannancheril Sebastian Francis

The paper aims to investigate the feasibility of developing natural dyes from the barks of Araucaria columnaris and leaves of Macaranga peltata, Averrhoa bilimbi. The paper also…

Abstract

Purpose

The paper aims to investigate the feasibility of developing natural dyes from the barks of Araucaria columnaris and leaves of Macaranga peltata, Averrhoa bilimbi. The paper also deals with the application of natural dyes in textile coloration.

Design/methodology/approach

Dye extraction was carried out using the aqueous method. The dyeability of the aqueous extract was assessed on cotton, silk and polyester yarns using different mordants (alum, acetic acid, CuSO4, lemon juice) and without mordant. UV–Visible spectral analysis and pH of different natural dyes were determined. Percent absorption, K/S values, CIELab values and fastness properties of the selected dyed yarns were also assessed.

Findings

The percentage values for dye exhaustion differed with various mordants. The K/S values were found to be influenced by the addition of mordants. Different hues were obtained with the usage of different mordants. Fastness results exhibited good to very good grades.

Research limitations/implications

The effective application of aqueous method of dye extraction in the study avoids solvent toxicity. The current results proved that the dyeing could be achieved at room temperature for different yarns (cotton, silk, polyester). At present, no report exists in the literature of research work on the extraction of natural dyes from the leaves of M. peltata, A. bilimbi and their dyeing potential on cotton, silk and polyester.

Practical implications

The present work offers new environment-friendly dye as well as simple dyeing method. Barks and leaves are promising sources of dye. Enormous availability of barks and leaves avoids the exploitation of the plant parts for the extraction of natural dyes.

Originality/value

The important feature of this study was the effective dyeing of natural and synthetic fibers at room temperature. The novel sources of natural dyes would contribute significantly to the existing knowledge of dyeing, and the natural dyes reduce the environmental impact of synthetic dyes.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 21 October 2019

Khaled Mostafa and Azza El-Sanabary

This study aims to explore the incorporation of the authors previously prepared chitosan nanoparticles (CNPs) of size around 60-100 nm in the cross-linking formulation of viscose…

Abstract

Purpose

This study aims to explore the incorporation of the authors previously prepared chitosan nanoparticles (CNPs) of size around 60-100 nm in the cross-linking formulation of viscose fabrics to see CNPs impact in terms of imparting multi-functional characteristics such as tensile strength, dry wrinkle recovery angles and antibacterial properties.

Design/methodology/approach

CNPs of size around 60-100 nm were incorporated in cross-linking formulations for viscose fabrics, including different concentrations of glutaraldehyde as a non-formaldehyde cross-linking agent and magnesium chloride hexahydrate as a catalyst. The formulations were applied at different curing times and temperatures in 100 mL distilled water, giving rise to a wet pickup of ca. 85 per cent. The fabrics were dried for 3 min at 85°C and cured at specified temperatures for fixed time intervals in thermo fixing oven according to the traditional pad-dry-cure method.

Findings

The above eco-friendly method for finished viscose fabrics was found to obtain high dry wrinkle recovery angle and maintain the tensile strength of the finished fabric within the acceptable range, as well as antibacterial properties against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively. Both, scanning electron microscope and nitrogen percent on the finished fabric confirm the penetration of CNPs inside the fabric structure. Finally, viscose fabrics pageant antibacterial activity against gram-positive and gram-negative bacteria assessed even after 20 washing cycle.

Research limitations/implications

CNPs with its flourishing effect with respect to cationic nature, biodegradability, reactivity, higher surface area and antimicrobial activity; in addition to glutaraldehyde as non-formaldehyde finishing agent can be used as multi-functional agents for viscose fabrics instead of DMDHEU, polyacrylate and monomeric composites as hazardous materials.

Practical implications

CNPs as cationic biopolymers were expected to impart multi-functional properties to viscose fabrics especially with obtaining reasonable dry wrinkle recovery angle and tensile strength in addition to antibacterial properties.

Originality/value

The novelty addressed here is undertaken with a view to impart easy care characteristics and antibacterial activities onto viscose fabrics using CNPs as antimicrobial agent and glutaraldehyde as non-formaldehyde durable press finishes to-replace the traditional formaldehyde-based resins. Besides, to the authors’ knowledge, there is no published work so far using the above cross-linking formulation written above.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2020

Kh M. Mostafa and A.A. El-Sanabary

This study aims to use multi-functional viscose fabric that was facilely developed with with respect to ease and care characteristics, reinforcement effect and antibacterial…

Abstract

Purpose

This study aims to use multi-functional viscose fabric that was facilely developed with with respect to ease and care characteristics, reinforcement effect and antibacterial activity by using novel echo friendly antibacterial finish based on citric acid/sodium hypophosphite and the authors’ previously tailor-made poly meth acrylic acid (MAA)-chitosan graft copolymer via alternative microwave curing approach instead of traditional high-temperature cure one.

Design/methodology/approach

Viscose fabric was paddled twice in the cross-linking formulations containing different concentrations of citric acid, poly (MAA)-chitosan graft copolymer and sodium hypophosphite to 90 % wet pick up and dried at 100°C for 3 min in an electric oven. Then, the treated fabrics were placed on the disk spinner of the microwave oven and cured at different power (100–800 Watt) for various durations (60–180 s). The fabric was then water-rinsed and dried at ambient condition before use.

Findings

Results revealed that the above echo friendly method for finished viscose fabrics was found to achieve relatively high dry wrinkle recovery angle and maintain the loss in tensile strength within the acceptable range, as well as antibacterial activity against Escherichia coli and Staphylococcus aureus as a gram-negative and gram-positive bacteria, respectively; in addition to durability up to ten washing cycles. Furthermore, scanning electron microscope images, nitrogen content and add on % of the finished fabric confirmed the penetration of grafted chitosan inside the fabric structure. The tentative mechanism for these reactions is advocated.

Originality/value

The novelty addressed here is undertaken with the advantages of using citric acid as a nonformaldehyde, safe and cheap poly carboxylic acid as a crosslinking agent and sodium hypophosphite as a potential catalyst, in addition to the authors’ noncitable multifunctional echo friendly tailor-made poly (MAA)-chitosan graft copolymer for imparting reinforcement and antibacterial characteristics to viscose fabric that uses the pad-dry/cure microwave fixation for progressively persuaded heat within the fabric during curing.

Research limitations/implications

This was done to see the impact of microwave as green and efficient tool with respect to reduction in organic solvents, chemicals and exposer time as well as fixation temperature on the finishing reaction in comparison with traditional pad-dry-cure method.

Practical implications

Poly (MAA)-chitosan graft copolymer as amphoteric biopolymer was expected to impart multifunctional properties to viscose fabrics especially with comparable dry wrinkle recovery angle and minimize the loss in tensile strength in addition to antibacterial properties in comparison with untreated one.

Details

Pigment & Resin Technology, vol. 50 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 April 2017

M. Janarthanan and M. Senthil Kumar

The healthcare and hygiene textiles are gaining more importance for their eco-friendly and effective antimicrobial properties that have become essential to safeguard human beings…

Abstract

Purpose

The healthcare and hygiene textiles are gaining more importance for their eco-friendly and effective antimicrobial properties that have become essential to safeguard human beings from harmful microorganisms. The fabrics finished with chemical-based antimicrobial agents lead to environmental issues and are harmful to human beings. The paper aims to discuss these issues.

Design/methodology/approach

The present investigation is to develop a fabric with antioxidant and antimicrobial properties using the extracts of brown algae. Antimicrobial property has been imparted to the cotton fabric using microcapsules of brown seaweed extracts using the pad-dry-cure method. The presence of bioactive compounds and antioxidant activities of brown algae extracts was evaluated using gas chromatography-mass spectrometry and 2, 2-diphenyl-1-picrylhydrazyl radical scavenging technique, respectively. The total phenolic content of the seaweed extract was determined by the Folin-Ciocalteu method. The minimum bactericidal concentration and minimum inhibitory concentration methods were used to determine the antibacterial activity of the bacterial reduction percentage and parallel streak methods were used evaluate the antibacterial activity of seaweed-treated fabrics.

Findings

The methanol fraction of the treated fabric had the highest antioxidant activity (42.5+1.21 per cent), because the higher phenolic content traps the reactive oxygen species and develops the cells present in the skin. The results show that the lower inhibition (250 µg/mL) and bactericidal concentrations (1,000 µg/mL) possess higher antibacterial activity. The results also show that the treated fabric possess higher bacterial reduction of 96 per cent and higher zone of inhibition against Escherichia Coli and Staphylococcus Aureus which was about 35 mm and 40 mm. The air permeability, bending length and the wicking behaviour of the treated fabric were slightly reduced, but it has good bursting strength compared with the untreated fabric.

Originality/value

Such treated fabric is used for making wound dressing, surgical gowns, antibacterial socks and gauze bandage products in healthcare and hygiene textiles.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 January 2023

Ana Aline Mendes Paim, Morgana Carneiro de Andrade and Fernanda Steffens

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal…

Abstract

Purpose

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal protection in pandemic situations.

Design/methodology/approach

A systematic review and systemic analysis of the literature on the subject were performed using the process knowledge development – constructivist (ProKnow-C) methodology.

Findings

A bibliographic portfolio with 16 relevant studies was obtained. This portfolio represents the main focus of this research field, including the main filtration mechanisms, ways of disinfecting N95 respirators and proposed methods to evaluate the filtration efficiency of different materials with potential for mask development.

Originality/value

To the best of the authors’ knowledge, this is the first time the ProKnow-C methodology was used in the textile field. Thus, future studies can benefit from using the Proknow-C for selecting and analyzing relevant textile studies following a systematic approach.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 1000