Search results

1 – 10 of 390
Article
Publication date: 22 June 2012

ZhiQun Liu, YiShang Zhang and WenBo Wang

The purpose of this paper is to optimize the key dimensions parameters of the missile suspension structure to ensure the structural fatigue life (>10000 cycles) with the…

Abstract

Purpose

The purpose of this paper is to optimize the key dimensions parameters of the missile suspension structure to ensure the structural fatigue life (>10000 cycles) with the reliability of 0.995.

Design/methodology/approach

The design objective is the fatigue life reliability of the structure, while the design variables are the four fatigue‐sensitive dimensions. The nominal stress approach is introduced to predict the fatigue life, and it was verified by comparing with experimental data. The second respond surface method is applied to solve the reliability in a finite element‐supported analysis using software MSC Patran/Nastran. A Sequential quadratic programming (SQP) algorithm is used for structure optimization.

Findings

The fillet radius r is the most important factor that influences the fatigue life reliability of the structure. The four optimal dimensions parameters are obtained by a reliability‐based design optimization process with the fatigue life and reliability fulfilling the demands.

Originality/value

The optimal result can be used as the design values for missile suspension structure. The feasibility of the reliability‐based design optimization method is validated for the design of missile suspension structure.

Article
Publication date: 16 April 2018

Naser Safaeian Hamzehkolaei, Mahmoud Miri and Mohsen Rashki

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and…

Abstract

Purpose

Reliability-based design optimizations (RBDOs) of engineering structures involve complex non-linear/non-differentiable performance functions, including both continuous and discrete variables. The gradient-based RBDO algorithms are less than satisfactory for these cases. The simulation-based approaches could also be computationally inefficient, especially when the double-loop strategy is used. This paper aims to present a pseudo-double loop flexible RBDO, which is efficient for solving problems, including both discrete/continuous variables.

Design/methodology/approach

The method is based on the hybrid improved binary bat algorithm (BBA) and weighed simulation method (WSM). According to this method, each BBA’s movement generates proper candidate solutions, and subsequently, WSM evaluates the reliability levels for design candidates to conduct swarm in a low-cost safe-region.

Findings

The accuracy of the proposed enhanced BBA and also the hybrid WSM-BBA are examined for ten benchmark deterministic optimizations and also four RBDO problems of truss structures, respectively. The solved examples reveal computational efficiency and superiority of the method to conventional RBDO approaches for solving complex problems including discrete variables.

Originality/value

Unlike other RBDO approaches, the proposed method is such organized that only one simulation run suffices during the optimization process. The flexibility future of the proposed RBDO framework enables a designer to present multi-level design solutions for different arrangements of the problem by using the results of the only one simulation for WSM, which is very helpful to decrease computational burden of the RBDO. In addition, a new suitable transfer function that enhanced convergence rate and search ability of the original BBA is introduced.

Article
Publication date: 18 October 2018

Lei Wang, Haijun Xia, Yaowen Yang, Yiru Cai and Zhiping Qiu

The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval…

Abstract

Purpose

The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval uncertainties of load and material parameters based on the technology of 3D printing or additive manufacturing.

Design/methodology/approach

First, the uncertainty quantification analysis is accomplished by interval Taylor extension to determine boundary rules of concerned displacement responses. Based on the interval interference theory, a novel reliability index, named as the optimization feature distance, is then introduced to construct non-probabilistic reliability constraints. To circumvent convergence difficulties in solving large-scale variable optimization problems, the gradient-based method of moving asymptotes is also used, in which the sensitivity expressions of the present reliability measurements with respect to design variables are deduced by combination of the adjoint vector scheme and interval mathematics.

Findings

The main findings of this paper should lie in that new non-probabilistic reliability index, i.e. the optimization feature distance which is defined and further incorporated in continuum topology optimization issues. Besides, a novel concurrent design strategy under consideration of macro-micro integration is presented by using the developed RBTO methodology.

Originality/value

Uncertainty propagation analysis based on the interval Taylor extension method is conducted. Novel reliability index of the optimization feature distance is defined. Expressions of the adjoint vectors between interval bounds of displacement responses and the relative density are deduced. New NRBTO method subjected to continuum structures is developed and further solved by MMA algorithms.

Article
Publication date: 1 January 2014

Ziyan Ren, Dianhai Zhang and Chang Seop Koh

The purpose of this paper is to propose a multi-objective optimization algorithm, which can improve both the performance robustness and the constraint feasibility when the…

Abstract

Purpose

The purpose of this paper is to propose a multi-objective optimization algorithm, which can improve both the performance robustness and the constraint feasibility when the uncertainty in design variables is considered.

Design/methodology/approach

Multi-objective robust optimization by gradient index combined with the reliability-based design optimization (RBDO).

Findings

It is shown that searching for the optimal design of the TEAM problem 22, which can minimize the magnetic stray field by keeping the target system energy (180 MJ) and improve the feasibility of superconductivity constraint (quenching condition), is possible by using the proposed method.

Originality/value

RBDO method applied to the electromagnetic problem cooperated with the design sensitivity analysis by the finite element method.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 1/2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2023

Shiyuan Yang, Debiao Meng, Yipeng Guo, Peng Nie and Abilio M.P. de Jesus

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper…

130

Abstract

Purpose

In order to solve the problems faced by First Order Reliability Method (FORM) and First Order Saddlepoint Approximation (FOSA) in structural reliability optimization, this paper aims to propose a new Reliability-based Design Optimization (RBDO) strategy for offshore engineering structures based on Original Probabilistic Model (OPM) decoupling strategy. The application of this innovative technique to other maritime structures has the potential to substantially improve their design process by optimizing cost and enhancing structural reliability.

Design/methodology/approach

In the strategy proposed by this paper, sequential optimization and reliability assessment method and surrogate model are used to improve the efficiency for solving RBDO. The strategy is applied to the analysis of two marine engineering structure cases of ship cargo hold structure and frame ring of underwater skirt pile gripper. The effectiveness of the method is proved by comparing the original design and the optimized results.

Findings

In this paper, the proposed new RBDO strategy is used to optimize the design of the ship cargo hold structure and the frame ring of the underwater skirt pile gripper. According to the results obtained, compared with the original design, the structure of optimization design has better reliability and stability, and reduces the risk of failure. This optimization can also better balance the relationship between performance and cost. Therefore, it is recommended for related RBDO problems in the field of marine engineering.

Originality/value

In view of the limitations of FORM and FOSA that may produce multiple MPPs for a single performance function, the new RBDO strategy proposed in this study provides valuable insights and robust methods for the optimization design of offshore engineering structures. It emphasizes the importance of combining advanced MPP search technology and integrating SORA and surrogate models to achieve more economical and reliable design.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 January 2023

Zhao Dong, Ziqiang Sheng, Yadong Zhao and Pengpeng Zhi

Mechanical products usually require deterministic finite element analysis in the design phase to determine whether their structures meet the requirements. However, deterministic…

Abstract

Purpose

Mechanical products usually require deterministic finite element analysis in the design phase to determine whether their structures meet the requirements. However, deterministic design ignores the influence of uncertainties in the design and manufacturing process of mechanical products, leading to the problem of a lack of design safety or excessive redundancy in the design. In order to improve the accuracy and rationality of the design results, a robust design method for structural reliability based on an active-learning marine predator algorithm (MPA)–backpropagation (BP) neural network is proposed.

Design/methodology/approach

The MPA was used to obtain the optimal weights and thresholds of a BP neural network, and an active-learning function applicable to neural networks was proposed to efficiently improve the prediction performance of the BP neural network. On this basis, a robust optimization design method for mechanical product reliability based on the active-learning MPA-BP model was proposed. Random moving quadrilateral sampling was used to obtain the sample points required for training and testing of the neural network, and the reliability sensitivity corresponding to each sample point was calculated by subset simulated significant sampling (SSIS). The total mass of the mechanical product and the structural reliability sensitivity of the trained active-learning MPA-BP model output were taken as the optimization objectives, and a multi-objective reliability-robust optimization design model was constructed, which was solved by the second-generation non-dominated ranking genetic algorithm (NSGA-II). Then, the dominance function was used in the obtained Pareto solution set to make a dominance-seeking decision to obtain the final reliability-robust optimization design solution. The feasibility of the proposed method was verified by a reliability-robust optimization design example of the bogie frame.

Findings

The prediction error of the active-learning MPA-BP neural network was smaller than those of the particle swarm optimization (PSO)-BP, marine predator algorithm (MPA)-BP and genetic algorithm (GA)-BP neural networks under the same basic parameter settings of the algorithm, which indicated that the improvement strategy proposed in this paper improved the prediction accuracy of the BP neural network. To ensure the reliability of the bogie frame, the reliability sensitivity and total mass of the bogie frame were reduced, which not only realized the lightweight design of the bogie frame, but also improved the reliability and robustness of the bogie.

Originality/value

The MPA algorithm with a higher optimization efficiency was introduced to find the weights and thresholds of the BP neural network. A new active-learning function was proposed to improve the prediction accuracy of the MPA-BP neural network.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 August 2020

Sadik Lafta Omairey, Peter Donald Dunning and Srinivas Sriramula

The purpose of this study is to enable performing reliability-based design optimisation (RBDO) for a composite component while accounting for several multi-scale uncertainties…

Abstract

Purpose

The purpose of this study is to enable performing reliability-based design optimisation (RBDO) for a composite component while accounting for several multi-scale uncertainties using a large representative volume element (LRVE). This is achieved using an efficient finite element analysis (FEA)-based multi-scale reliability framework and sequential optimisation strategy.

Design/methodology/approach

An efficient FEA-based multi-scale reliability framework used in this study is extended and combined with a proposed sequential optimisation strategy to produce an efficient, flexible and accurate RBDO framework for fibre-reinforced composite laminate components. The proposed RBDO strategy is demonstrated by finding the optimum design solution for a composite component under the effect of multi-scale uncertainties while meeting a specific stiffness reliability requirement. Performing this using the double-loop approach is computationally expensive because of the number of uncertainties and function evaluations required to assess the reliability. Thus, a sequential optimisation concept is proposed, which starts by finding a deterministic optimum solution, then assesses the reliability and shifts the constraint limit to a safer region. This is repeated until the desired level of reliability is reached. This is followed by a final probabilistic optimisation to reduce the mass further and meet the desired level of stiffness reliability. In addition, the proposed framework uses several surrogate models to replace expensive FE function evaluations during optimisation and reliability analysis. The numerical example is also used to investigate the effect of using different sizes of LRVEs, compared with a single RVE. In future work, other problem-dependent surrogates such as Kriging will be used to allow predicting lower probability of failures with high accuracy.

Findings

The integration of the developed multi-scale reliability framework with the sequential RBDO optimisation strategy is proven computationally feasible, and it is shown that the use of LRVEs leads to less conservative designs compared with the use of single RVE, i.e. up to 3.5% weight reduction in the case of the 1 × 1 RVE optimised component. This is because the LRVE provides a representation of the spatial variability of uncertainties in a composite material while capturing a wider range of uncertainties at each iteration.

Originality/value

Fibre-reinforced composite laminate components designed using reliability and optimisation have been investigated before. Still, they have not previously been combined in a comprehensive multi-scale RBDO. Therefore, this study combines the probabilistic framework with an optimisation strategy to perform multi-scale RBDO and demonstrates its feasibility and efficiency for an fibre reinforced polymer component design.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 October 2023

Xiongming Lai, Yuxin Chen, Yong Zhang and Cheng Wang

The paper proposed a fast procedure for solving the reliability-based robust design optimization (RBRDO) by modifying the RBRDO formulation and transforming it into a series of…

Abstract

Purpose

The paper proposed a fast procedure for solving the reliability-based robust design optimization (RBRDO) by modifying the RBRDO formulation and transforming it into a series of RBRDO subproblems. Then for each subproblem, the objective function, constraint function and reliability index are approximated using Taylor series expansion, and their approximate forms depend on the deterministic design vector rather than the random vector and the uncertain estimation in the inner loop of RBRDO can be avoided. In this way, it can greatly reduce the evaluation number of performance function. Lastly, the trust region method is used to manage the above sequential RBRDO subproblems for convergence.

Design/methodology/approach

As is known, RBRDO is nested optimization, where the outer loop updates the design vector and the inner loop estimate the uncertainties. When solving the RBRDO, a large evaluation number of performance functions are needed. Aiming at this issue, the paper proposed a fast integrated procedure for solving the RBRDO by reducing the evaluation number for the performance functions. First, it transforms the original RBRDO problem into a series of RBRDO subproblems. In each subproblem, the objective function, constraint function and reliability index caused are approximated using simple explicit functions that solely depend on the deterministic design vector rather than the random vector. In this way, the need for extensive sampling simulation in the inner loop is greatly reduced. As a result, the evaluation number for performance functions is significantly reduced, leading to a substantial reduction in computation cost. The trust region method is then employed to handle the sequential RBRDO subproblems, ensuring convergence to the optimal solutions. Finally, the engineering test and the application are presented to illustrate the effectiveness and efficiency of the proposed methods.

Findings

The paper proposes a fast procedure of solving the RBRDO can greatly reduce the evaluation number of performance function within the RBRDO and the computation cost can be saved greatly, which makes it suitable for engineering applications.

Originality/value

The standard deviation of the original objective function of the RBRDO is replaced by the mean and the reliability index of the original objective function, which are further approximated by using Taylor series expansion and their approximate forms depend on the deterministic design vector rather than the random vector. Moreover, the constraint functions are also approximated by using Taylor series expansion. In this way, the uncertainty estimation of the performance functions (i.e. the mean of the objective function, the constraint functions) and the reliability index of the objective function are avoided within the inner loop of the RBRDO.

Details

International Journal of Structural Integrity, vol. 14 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 September 2004

Jenam Kang, Chwail Kim and Semyung Wang

This paper presents a probabilistic optimal design for electromagnetic systems. A 2D magnetostatic finite element model is constructed for a reliability‐based topology optimization

Abstract

This paper presents a probabilistic optimal design for electromagnetic systems. A 2D magnetostatic finite element model is constructed for a reliability‐based topology optimization (RBTO). Permeability, coercive force, and applied current density are considered as uncertain variables. The uncertain variable means that the variable has a variance on a certain design point. In order to compute reliability constraints, a performance measure approach is widely used. To find reliability index easily, the limit‐state function is linearly approximated at each iteration. This approximation method is called the first‐order reliability method, which is widely used in reliability‐based design optimizations. To show the effectiveness of the proposed method, RBTO for the electromagnetic systems is applied to magnetostatic problems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Hyeong-Uk Park, Jae-Woo Lee, Joon Chung and Kamran Behdinan

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization

Abstract

Purpose

The purpose of this paper is to study the consideration of uncertainty from analysis modules for aircraft conceptual design by implementing uncertainty-based design optimization methods. Reliability-Based Design Optimization (RBDO), Possibility-Based Design Optimization (PBDO) and Robust Design Optimization (RDO) methods were developed to handle uncertainties of design optimization. The RBDO method is found suitable for uncertain parameters when sufficient information is available. On the other hand, the PBDO method is proposed when uncertain parameters have insufficient information. The RDO method can apply to both cases. The RBDO, PBDO and RDO methods were considered with the Multidisciplinary Design Optimization (MDO) method to generate conservative design results when low fidelity analysis tools are used.

Design/methodology/approach

Methods combining MDO with RBDO, PBDO and RDO were developed and have been applied to a numerical analysis and an aircraft conceptual design. This research evaluates and compares the characteristics of each method in both cases.

Findings

The RBDO result can be improved when the amount of data concerning uncertain parameters is increased. Conversely, increasing information regarding uncertain parameters does not improve the PBDO result. The PBDO provides a conservative result when less information about uncertain parameters is available.

Research limitations/implications

The formulation of RDO is more complex than other methods. If the uncertainty information is increased in aircraft conceptual design case, the accuracy of RBDO will be enhanced.

Practical implications

This research increases the probability of a feasible design when it considers the uncertainty. This result gives more practical optimization results on a conceptual design level for fabrication.

Originality/value

It is RBDO, PBDO and RDO methods combined with MDO that satisfy the target probability when the uncertainties of low fidelity analysis models are considered.

1 – 10 of 390