Search results

11 – 20 of over 2000
Article
Publication date: 1 April 2005

Xiaojun Wu, Weijun Liu and Michael Yu Wang

The representation of Heterogeneous Object (HO) is divided into two categories: Data model (DM) and material evaluation paradigm (MEP). A hybrid methodology with geometry model…

Abstract

The representation of Heterogeneous Object (HO) is divided into two categories: Data model (DM) and material evaluation paradigm (MEP). A hybrid methodology with geometry model and volumetric dataset to represent heterogeneous properties is proposed in this paper. Geometry model of an object can guarantee the accuracy of the final HO slices; and volumetric dataset lends the flexible manipulability and other advantages to HO representation. Two MEPs, namely distance field (DF) based and Fixed Reference Features & Active Grading Source(s) (FRF&AGS) are presented to facilitate the process of HO representation according to the designer)s input parameters. The DM can be modified interactively with users until the final satisfactory result is obtained. In this paper, a scheme of HO slicing is described. In this method, we utilize the slices contour of geometrical model as constraint to reconstruct the HO slices, which can theoretically achieve the same accuracy with the geometrical shape. Some examples of Heterogeneous object represented with our scheme are provided.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 21 June 2018

Aatef Hobiny and Ibrahim Abbas

The purpose of this paper is to study the wave propagation in a non-homogenous semiconducting medium through the photothermal process using the fractional order…

Abstract

Purpose

The purpose of this paper is to study the wave propagation in a non-homogenous semiconducting medium through the photothermal process using the fractional order photo-thermoelastic without neglecting the coupling between the plasma and thermoelastic waves that photogenerated through traction free and loaded thermally by exponentially decaying pulse boundary heat flux.

Design/methodology/approach

The analytical solutions in the transformed domain by the eigenvalue approach were observed through the transform techniques of Laplace.

Findings

Silicon-like semiconductor was used to achieve the numerical computations.

Originality/value

Some comparisons are shown in the figures to estimate the effects of the fractional order and non-homogeneous parameters.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1979

P.P. NELSON

In order to obtain a universal description of neurons, we review the main experimental data in regard to gates, ionic channels and post‐synaptic pores. Some theoretical…

Abstract

In order to obtain a universal description of neurons, we review the main experimental data in regard to gates, ionic channels and post‐synaptic pores. Some theoretical discussions allow us to conclude that (a) the synaptic gates are always optimized to give a linear answer; (b) there is only one kind of sodium channels and gates; (c) there is only one kind of potassium gates in the somatic part of true neurons; (d) the delays in the opening of the gates differ slightly from one neuron to another; (e) the ionic concentrations inside the neurons are related to the values of these delays.

Details

Kybernetes, vol. 8 no. 2
Type: Research Article
ISSN: 0368-492X

Article
Publication date: 1 November 1983

Americus

Acrylic resins are formulated into protective coatings in several ways. Most important volumewise are waterborne formulations based either on pure acrylics or on acrylic‐vinyl…

Abstract

Acrylic resins are formulated into protective coatings in several ways. Most important volumewise are waterborne formulations based either on pure acrylics or on acrylic‐vinyl copolymers. Second most important are solvent‐based enamels and lacquers widely used for product finishes particularly in the automotive and appliance industries. An innovation of a decade or so ago is proving popular in this area, namely two component coatings based on hydroxyl‐containing acrylics and di‐ or polyisocyanates. These combine many of the good features of acrylics and urethanes and provide hard thermoset coatings. Yet they cure at temperatures as low as ambient.

Details

Pigment & Resin Technology, vol. 12 no. 11
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 9 February 2024

Rizk Mostafa Shalaby and Mohamed Saad

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free…

Abstract

Purpose

The purpose of the present work is to study the impacts of rapid cooling and Tb rare-earth additions on the structural, thermal and mechanical behavior of Bi–0.5Ag lead-free solder for high-temperature applications.

Design/methodology/approach

Effect of rapid solidification processing on structural, thermal and mechanical properties of Bi-Ag lead-free solder reinforced Tb rare-earth element.

Findings

The obtained results indicated that the microstructure consists of rhombohedral Bi-rich phase and Ag99.5Bi0.5 intermetallic compound (IMC). The addition of Tb could effectively reduce the onset and melting point. The elastic modulus of Tb-containing solders was enhanced to about 90% at 0.5 Tb. The higher elastic modulus may be attributed to solid solution strengthening effect, solubility extension, microstructure refinement and precipitation hardening of uniform distribution Ag99.5Bi0.5 IMC particles which can reasonably modify the microstructure, as well as inhibit the segregation and hinder the motion of dislocations.

Originality/value

It is recommended that the lead-free Bi-0.5Ag-0.5Tb solder be a candidate instead of common solder alloy (Sn-37Pb) for high temperature and high performance applications.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 2 January 2018

Yongtao Yao, Yuncheng Xu, Bing Wang, Weilong Yin and Haibao Lu

The purpose of this paper is to provide a review of recent systematic and comprehensive advancement in electrospun polymer fiber and their composites with shape memory property.

Abstract

Purpose

The purpose of this paper is to provide a review of recent systematic and comprehensive advancement in electrospun polymer fiber and their composites with shape memory property.

Design/methodology/approach

The nanofiber manufacture technique is initially reviewed. Then, the influence of electrospinning parameters and actuation method has been discussed. Finally, the study concludes with a brief review of recent development in potential applications.

Findings

Shape memory polymer (SMP) nanofibers are a type of smart materials which can change shape under external stimuli (e.g. temperature, electricity, magnetism, solvent). In general, such SMP nanofibers could be easily fabricated by mature electrospinning technique. The nanofiber morphology is mainly affected by the electrospinning parameters, including applied voltage, tip-to-collector distance, viscosity of solution, humidity and molecular weight. For actuation method, most SMP nanofibers and their composites can change their shapes in response to heat, magnetic field or solvent, while few can be driven by electricity. Compared with the block SMPs, electrospun SMP nanofibers’ mat with porosity and low mechanical property have a wide potential application field including tissue engineering, drug delivery, filtration, catalysis.

Originality/value

This paper provides a detailed review of shape memory nanofibers: fabrication, actuation and potential application, in the near future.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 January 2017

Zhenghong Li, Haibao Lu, Yongtao Yao and Long Lin

The purpose of this paper is to develop an effective approach to significantly improve the thermomechanical properties of shape memory polymer (SMP) nanocomposites that show fast…

Abstract

Purpose

The purpose of this paper is to develop an effective approach to significantly improve the thermomechanical properties of shape memory polymer (SMP) nanocomposites that show fast thermally responsive shape recovery.

Design/methodology/approach

Hexagonal boron nitrides (h-BNs) were incorporated into polymer matrix in an attempt to improve the thermal conductivity and thermally responsive shape recovery behaviour of SMP, respectively. Thermally actuated shape recovery behaviour was recorded and monitored instrumentally.

Findings

The results show that both glass transition temperature (Tg) and thermomechanical properties of the SMP nanocomposites have been progressively improved with increasing concentration of h-BNs. Analytical results also suggest that the fast-responsive recovery behaviour of the SMP nanocomposite incorporated with h-BNs was due to the increased thermal conductivity.

Research limitations/implications

A simple way for fabricating SMP nanocomposites with enhanced thermally responsive shape recovery based on the incorporation of h-BNs was developed.

Originality/value

The outcome of this study may help fabrication of SMP nanocomposites with fast responsive recovery behaviour.

Details

Pigment & Resin Technology, vol. 46 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Yongkun Wang, Tianran Ma, Wenchao Tian, Junjue Ye, Xing Wang and Xiangjun Jiang

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of…

Abstract

Purpose

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of nanocomposites.

Design/methodology/approach

Graphene was dispersed in N,N-dimethylformamide, and the mixture was spooned into epoxy-cyanate ester mixtures to form graphene/epoxy-cyanate ester nanocomposites. The nanocomposites were deformed under 150°C, and shape recovery test was conducted under an electric voltage of 20-100 V.

Findings

Graphene is used to improve the shape recovery behavior and performance of shape-memory polymers (SMPs) for enhanced electrical actuation effectiveness. With increment of graphene content, the shape recovery speed of nanocomposites increases significantly.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using graphene.

Originality/value

The outcome of this study will help to fabricate the SMP nanocomposites with high electrical actuation effectiveness and improve the shape recovery speed of the nanocomposites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 September 2016

Feride Akman and Nevin Çankaya

This paper aims to synthesise and characterise N-cyclohexylmethacrylamide (NCMA) monomer which contains thermosensitive group. The characterisation of monomer was performed both…

Abstract

Purpose

This paper aims to synthesise and characterise N-cyclohexylmethacrylamide (NCMA) monomer which contains thermosensitive group. The characterisation of monomer was performed both theoretically and experimentally.

Design/methodology/approach

The monomer was prepared by reacting cyclohexylamine with methacryloyl chloride in the presence of triethylamine at room temperature. The synthesised monomer was characterised by using not only Density Functional Theory (DFT) and Hartree–Fock (HF) with the Gaussian 09 software but also fourier transform infrared (FT–IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy.

Findings

Both the experimental and the theoretical methods demonstrated that the monomer was successfully synthesised. The vibrational frequencies, the molecular structural geometry, such as optimised geometric bond angles, bond lengths and the Mulliken atomic charges of NCMA were investigated by using DFT/B3LYP and HF methods with the 3-21G* basis set. The experimental results were compared with theoretical values. The results revealed that the calculated frequencies were in good accord with the experimental values. Besides, frontier molecular orbitals (FMOs) and molecular electrostatic potential of NCMA were investigated by theoretical calculations at the B3LYP/3–21G* basis set.

Research limitations/implications

Monomer and polymer containing a thermosensitive functional group have attracted great interest from both industrial and academic fields. Their characterisation can provide great opportunities for polymer science by using DFT and HF methods.

Originality/value

The monomer containing a thermosensitive functional group and a various polymer may be prepared by using DFT and HF methods described in this paper. The calculated data are greatly important to provide insight into molecular analysis and then used in technological applications.

Article
Publication date: 2 January 2018

Xin Wang, Xiaoling Xu, Zuowan Zhou and Jihua Gou

This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano…

Abstract

Purpose

This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano or micro-sized particles in enhancing the properties of SMP was investigated. This study also attempts to use a low-cost and effective spraying approach to fabricate the coatings. The coatings are expected to have good conformability with the substrate and deliver multi-functional performance, such as wrinkle free, wear resistance, thermal stability and antimicrobial property.

Design/methodology/approach

High-performance SMP composite coatings or thin films were fabricated by a home-made continuous spray-deposition system. The morphologies of the coatings were studied using the scanning electron microscope and the transmission electron microscope. The abrasion properties were evaluated by Taber Abraser test, and thermo-gravimetric analysis was carried out to investigate the thermal properties of prepared composites. The antimicrobial property was determined by the inhibition zone method using E. coli. The thermally responsive shape memory effect of the resulting composites was also characterized.

Findings

The morphology analysis indicated that the nanoclay was distributed on the surface of the coating which resulted in a significant improvement of the wear property. The wear resistance of the coatings with nanoclay was improved as much as 40 per cent compared with that of the control sample. The thermo-gravimetric analysis revealed that the weight loss rate of composites with nanoclay was dropped over 40 per cent. The SMP coating with zinc oxide (ZnO) showed excellent antimicrobial effect. The shape recovery effect of SMP/nanoclay and SMP/ZnO composites can be triggered by external heating and the composites can reach a full shape recovery within 60 s.

Research limitations/implications

This study proposed a continuous spray-deposition fabrication of SMP composite coatings, which provides a new avenue to prepare novel multi-functional coatings with low cost.

Originality/value

Most studies have emphasized on the sole property of SMP composites. Herein, a novel SMP composite coating which could deliver multi-functionality such as wrinkle free, wear resistance, thermal stability and antimicrobial property was proposed.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

11 – 20 of over 2000