Search results

1 – 10 of over 40000
Article
Publication date: 1 June 2005

Shijie Zhang and Xibin Cao

To give a closed‐form solution of the relative pose determination problem based on monocular vision during final approach phase of spacecraft Rendzvous and Docking.

Abstract

Purpose

To give a closed‐form solution of the relative pose determination problem based on monocular vision during final approach phase of spacecraft Rendzvous and Docking.

Design/methodology/approach

Based on the assumption of scaled orthographic projection, the model of perspective projection is simplified by representing the relative attitude using unit quaternion. Then a closed‐form solution is derived. Subsequently, this study correct the approximate solution to compensate the error caused by the assumption of scaled orthographic projection.

Findings

Extensive simulation studies were conducted for the validation of the proposed algorithm using Matlab™. When there are no relative attitudes between RVD spacecrafts, target distance for camera=2‐20 m. The simulation results show that the largest relative error of corrected relative position parameters is about 0.12 percent. When distance between RVD spacecrafts exceeds 5 m, the largest error of corrected relative attitude parameters are less than 0.3°. When the distance between spacecrafts are constant, the relative attitude parameters are changed, respectively, the simulition results show the largest relative error of relative position is 1 percent, and largest error of estimated relative attitude is 1.2°, when a relative attitude angle reaches 20°.

Originality/value

The proposed algorithm avoids the multiple results problem in determining the relative position and attitude parameters and the closed‐form solution is simple and effective, is more suitable for on‐board implementation.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 4 October 2018

Zhiming Chen, Lei Li, Yunhua Wu, Bing Hua and Kang Niu

On-orbit service technology is one of the key technologies of space manipulation activities such as spacecraft life extension, fault spacecraft capture, on-orbit debris removal and

Abstract

Purpose

On-orbit service technology is one of the key technologies of space manipulation activities such as spacecraft life extension, fault spacecraft capture, on-orbit debris removal and so on. It is known that the failure satellites, space debris and enemy spacecrafts in space are almost all non-cooperative targets. Relatively accurate pose estimation is critical to spatial operations, but also a recognized technical difficulty because of the undefined prior information of non-cooperative targets. With the rapid development of laser radar, the application of laser scanning equipment is increasing in the measurement of non-cooperative targets. It is necessary to research a new pose estimation method for non-cooperative targets based on 3D point cloud. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a method based on the inherent characteristics of a spacecraft is proposed for estimating the pose (position and attitude) of the spatial non-cooperative target. First, we need to preprocess the obtained point cloud to reduce noise and improve the quality of data. Second, according to the features of the satellite, a recognition system used for non-cooperative measurement is designed. The components which are common in the configuration of satellite are chosen as the recognized object. Finally, based on the identified object, the ICP algorithm is used to calculate the pose between two frames of point cloud in different times to finish pose estimation.

Findings

The new method enhances the matching speed and improves the accuracy of pose estimation compared with traditional methods by reducing the number of matching points. The recognition of components on non-cooperative spacecraft directly contributes to the space docking, on-orbit capture and relative navigation.

Research limitations/implications

Limited to the measurement distance of the laser radar, this paper considers the pose estimation for non-cooperative spacecraft in the close range.

Practical implications

The pose estimation method for non-cooperative spacecraft in this paper is mainly applied to close proximity space operations such as final rendezvous phase of spacecraft or ultra-close approaching phase of target capture. The system can recognize components needed to be capture and provide the relative pose of non-cooperative spacecraft. The method in this paper is more robust compared with the traditional single component recognition method and overall matching method when scanning of laser radar is not complete or the components are blocked.

Originality/value

This paper introduces a new pose estimation method for non-cooperative spacecraft based on point cloud. The experimental results show that the proposed method can effectively identify the features of non-cooperative targets and track their position and attitude. The method is robust to the noise and greatly improves the speed of pose estimation while guarantee the accuracy.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 2 October 2017

Li Fan, Min Hu and Mingqi Yang

The purpose of this paper is to develop a theoretical design for the attitude control of electromagnetic formation flying (EMFF) satellites, present a nonlinear controller for the…

Abstract

Purpose

The purpose of this paper is to develop a theoretical design for the attitude control of electromagnetic formation flying (EMFF) satellites, present a nonlinear controller for the relative translational control of EMFF satellites and propose a novel method for the allocation of electromagnetic dipoles.

Design/methodology/approach

The feedback attitude control law, magnetic unloading algorithm and large angle manoeuvre algorithm are presented. Then, a terminal sliding mode controller for the relative translation control is put forward and the convergence is proved. Finally, the control allocation problem of electromagnetic dipoles is formulated as an optimization issue, and a hybrid particle swarm optimization (PSO) – sequential quadratic programming (SQP) algorithm to optimize the free dipoles. Three numerical simulations are carried out and results are compared.

Findings

The proposed attitude controller is effective for the sun-tracking process of EMFF satellites, and the magnetic unloading algorithm is valid. The formation-keeping scenario simulation demonstrates the effectiveness of the terminal sliding model controller and electromagnetic dipole calculation method.

Practical implications

The proposed method can be applied to solve the attitude and relative translation control problem of EMFF satellites in low earth orbits.

Originality/value

The paper analyses the attitude control problem of EMFF satellites systematically and proposes an innovative way for relative translational control and electromagnetic dipole allocation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Jun Sun, Xiande Wu, Shijie Zhang, Fengzhi Guo and Ting Song

The purpose of this paper is to propose an adaptive robust controller for coupled attitude and orbit control of rigid spacecraft based on dual quaternion in the presence of…

Abstract

Purpose

The purpose of this paper is to propose an adaptive robust controller for coupled attitude and orbit control of rigid spacecraft based on dual quaternion in the presence of external disturbances and model uncertainties.

Design/methodology/approach

First, based on dual quaternion, a theoretical model of the relative motion for rigid spacecraft is introduced. Then, an adaptive robust controller which can realize coordinated control of attitude and orbit is designed in the existence of external disturbances and model uncertainties.

Findings

This paper takes advantage of the Lyapunov function which can guarantee the asymptotic stabilization of the whole system in the existence of parameters uncertainties. Simulation results show that the proposed controller is feasible and effective.

Originality/value

This paper proposes a coupled attitude and orbit adaptive robust controller based on dual quaternion. Simulation results demonstrate that the proposed controller can achieve higher control performance in the presence of parameters uncertainties.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 November 2018

Kai Xiong and Liangdong Liu

The successful use of the standard extended Kalman filter (EKF) is restricted by the requirement on the statistics information of the measurement noise. The covariance of the…

Abstract

Purpose

The successful use of the standard extended Kalman filter (EKF) is restricted by the requirement on the statistics information of the measurement noise. The covariance of the measurement noise may deviate from its nominal value in practical environment, and the filtering performance may decline because of the statistical uncertainty. Although the adaptive EKF (AEKF) is available for recursive covariance estimation, it is often less accurate than the EKF with accurate noise statistics.

Design/methodology/approach

Aiming at this problem, this paper develops a parallel adaptive EKF (PAEKF) by combining the EKF and the AEKF with an adaptive law, such that the final state estimate is dominated by the EKF when the prior noise covariance is accurate, while the AEKF is activated when the actual noise covariance deviates from its nominal value.

Findings

The PAEKF can reduce the sensitivity of the algorithm to the model uncertainty and ensure the estimation accuracy in the normal case. The simulation results demonstrate that the PAEKF has the advantage of both the AEKF and the EKF.

Practical implications

The presented algorithm is applicable for spacecraft relative attitude and position estimation.

Originality/value

The PAEKF is presented for a kind of nonlinear uncertain systems. Stability analysis is provided to show that the error of the estimator is bounded under certain assumptions.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 April 2024

Yang Liu, Xiang Huang, Shuanggao Li and Wenmin Chu

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head…

Abstract

Purpose

Component positioning is an important part of aircraft assembly, aiming at the problem that it is difficult to accurately fall into the corresponding ball socket for the ball head connected with aircraft component. This study aims to propose a ball head adaptive positioning method based on impedance control.

Design/methodology/approach

First, a target impedance model for ball head positioning is constructed, and a reference positioning trajectory is generated online based on the contact force between the ball head and the ball socket. Second, the target impedance parameters were optimized based on the artificial fish swarm algorithm. Third, to improve the robustness of the impedance controller in unknown environments, a controller is designed based on model reference adaptive control (MRAC) theory and an adaptive impedance control model is built in the Simulink environment. Finally, a series of ball head positioning experiments are carried out.

Findings

During the positioning of the ball head, the contact force between the ball head and the ball socket is maintained at a low level. After the positioning, the horizontal contact force between the ball head and the socket is less than 2 N. When the position of the contact environment has the same change during ball head positioning, the contact force between the ball head and the ball socket under standard impedance control will increase to 44 N, while the contact force of the ball head and the ball socket under adaptive impedance control will only increase to 19 N.

Originality/value

In this paper, impedance control is used to decouple the force-position relationship of the ball head during positioning, which makes the entire process of ball head positioning complete under low stress conditions. At the same time, by constructing an adaptive impedance controller based on MRAC, the robustness of the positioning system under changes in the contact environment position is greatly improved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 2 September 2019

Xingyuan Wang, Zhifeng Lou, Xiaodong Wang, Yue Wang, Xiupeng Hao and Zhize Wang

The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts…

Abstract

Purpose

The purpose of this paper is to design an automatic press-fit instrument to realize precision assembly and connection quality assessment of a small interference fitting parts, armature.

Design/methodology/approach

In this paper, an automatic press-fit instrument was developed for the technical problems of reliable clamping and positioning of the armature, automatic measurement and adjustment of the attitude and evaluation of the connection quality. To compensate for the installation error of the equipment, corresponding calibration method was proposed for each module of the instrument. Assembly strategies of axial displacement and perpendicularity were also proposed to ensure the assembly accuracy. A theoretical model was built to calculate the resistant force generated by the non-contact regions and then combined with the thick-walled cylinder theory to predict the press-fit curve.

Findings

The calibration method and assembly strategy proposed in this paper enable the press-fit instrument to achieve good alignment and assembly accuracy. A reasonable range of press-fit curve obtained from theoretical model can achieve the connection quality assessment.

Practical implications

This instrument has been used in an armature assembly project. The practical results show that this instrument can assemble the armature components with complex structures automatically, accurately, in high-efficiency and in high quality.

Originality/value

This paper provides a technical method to improve the assembly quality of small precision interference fitting parts and provides certain methodological guidelines for precision peg-in-hole assembly.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 8 February 2013

Sanjay Jayaram

The purpose of this paper is to present novel robust fault tolerant control design architecture to detect and isolate spacecraft attitude control actuators and reconfigure to…

Abstract

Purpose

The purpose of this paper is to present novel robust fault tolerant control design architecture to detect and isolate spacecraft attitude control actuators and reconfigure to redundant backups to improve the practicality of actuator fault detection.

Design/methodology/approach

The Robust Fault Tolerant Control is designed for spacecraft Autonomous Rendezvous and Docking (AR&D) using Lyapunov direct approach applied to non‐linear model. An extended Kalman observer is used to accurately estimate the state of the attitude control actuators. Actuators on all three axes (roll/pitch/yaw) sequentially fail one after another and the robust fault tolerant controller acts to reconfigure to redundant backups to stabilize the spacecrafts and complete the required maneuver.

Findings

In the simulations, the roll, pitch and yaw dynamics of the spacecraft are considered and the attitude control actuators failures are detected and isolated. Furthermore, by switching to redundant backups, the guarantee of overall stability performance is demonstrated.

Research limitations/implications

A real time actuator failure detection and reconfiguration process using robust fault tolerant control is applied for spacecraft AR&D maneuvers. Finding an appropriate Lyapunov function for the non‐linear dynamics is not easy and always challenging. Failure of actuators on all three axes at the same time is not considered. It is a very useful approach to solve self‐assembly problems in space, spacecraft proximity maneuvers as well as co‐operative control of planetary vehicles in presence of actuator failures.

Originality/value

An approach has been proposed to detect, isolate and reconfigure spacecraft actuator failures occurred in the spacecraft attitude control system. A Robust Fault Tolerant Control scheme has been developed for the nonlinear AR&D maneuver for two spacecrafts. Failures that affect the control performance characteristics are considered and overall performance is guaranteed even in presence of control actuator failures. The architecture is demonstrated through model‐based simulation.

Details

International Journal of Intelligent Unmanned Systems, vol. 1 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 15 May 2017

Zhenyu Li, Bin Wang, Haitao Yang and Hong Liu

Rapid satellite capture by a free-floating space robot is a challenge problem because of no-fixed base and time-delay issues. This paper aims to present a modified target…

Abstract

Purpose

Rapid satellite capture by a free-floating space robot is a challenge problem because of no-fixed base and time-delay issues. This paper aims to present a modified target capturing control scheme for improving the control performance.

Design/methodology/approach

For handling such control problem including time delay, the modified scheme is achieved by adding a delay calibration algorithm into the visual servoing loop. To identify end-effector motions in real time, a motion predictor is developed by partly linearizing the space robot kinematics equation. By this approach, only ground-fixed robot kinematics are involved in the predicting computation excluding the complex space robot kinematics calculations. With the newly developed predictor, a delay compensator is designed to take error control into account. For determining the compensation parameters, the asymptotic stability condition of the proposed compensation algorithm is also presented.

Findings

The proposed method is conducted by a credible three-dimensional ground experimental system, and the experimental results illustrate the effectiveness of the proposed method.

Practical implications

Because the delayed camera signals are compensated with only ground-fixed robot kinematics, this proposed satellite capturing scheme is particularly suitable for commercial on-orbit services with cheaper on-board computers.

Originality/value

This paper is original as an attempt trying to compensate the time delay by taking both space robot motion predictions and compensation error control into consideration and is valuable for rapid and accurate satellite capture tasks.

Details

Industrial Robot: An International Journal, vol. 44 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 October 2002

Monica Schofield

Industrial robots are not accurate enough to be used without heavy investment in fixtures and manual programming to correct for positional variations, but this situation could be…

Abstract

Industrial robots are not accurate enough to be used without heavy investment in fixtures and manual programming to correct for positional variations, but this situation could be corrected with the introduction of a new position determination system. PosEye1 allows fixed and mobile robots to determine their absolute position and orientation. The author contends that without more active support from robot manufacturers in adopting such systems, current investment in full off‐line programming systems or digital plant technology will leave the automation industry with a costly “end of cable” problem.

Details

Industrial Robot: An International Journal, vol. 29 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 40000