Search results

1 – 4 of 4
Article
Publication date: 27 October 2020

Lokesh Singh, Rekh Ram Janghel and Satya Prakash Sahu

The study aims to cope with the problems confronted in the skin lesion datasets with less training data toward the classification of melanoma. The vital, challenging issue is the…

Abstract

Purpose

The study aims to cope with the problems confronted in the skin lesion datasets with less training data toward the classification of melanoma. The vital, challenging issue is the insufficiency of training data that occurred while classifying the lesions as melanoma and non-melanoma.

Design/methodology/approach

In this work, a transfer learning (TL) framework Transfer Constituent Support Vector Machine (TrCSVM) is designed for melanoma classification based on feature-based domain adaptation (FBDA) leveraging the support vector machine (SVM) and Transfer AdaBoost (TrAdaBoost). The working of the framework is twofold: at first, SVM is utilized for domain adaptation for learning much transferrable representation between source and target domain. In the first phase, for homogeneous domain adaptation, it augments features by transforming the data from source and target (different but related) domains in a shared-subspace. In the second phase, for heterogeneous domain adaptation, it leverages knowledge by augmenting features from source to target (different and not related) domains to a shared-subspace. Second, TrAdaBoost is utilized to adjust the weights of wrongly classified data in the newly generated source and target datasets.

Findings

The experimental results empirically prove the superiority of TrCSVM than the state-of-the-art TL methods on less-sized datasets with an accuracy of 98.82%.

Originality/value

Experiments are conducted on six skin lesion datasets and performance is compared based on accuracy, precision, sensitivity, and specificity. The effectiveness of TrCSVM is evaluated on ten other datasets towards testing its generalizing behavior. Its performance is also compared with two existing TL frameworks (TrResampling, TrAdaBoost) for the classification of melanoma.

Details

Data Technologies and Applications, vol. 55 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 20 June 2022

Lokesh Singh, Rekh Ram Janghel and Satya Prakash Sahu

Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in…

Abstract

Purpose

Automated skin lesion analysis plays a vital role in early detection. Having relatively small-sized imbalanced skin lesion datasets impedes learning and dominates research in automated skin lesion analysis. The unavailability of adequate data poses difficulty in developing classification methods due to the skewed class distribution.

Design/methodology/approach

Boosting-based transfer learning (TL) paradigms like Transfer AdaBoost algorithm can compensate for such a lack of samples by taking advantage of auxiliary data. However, in such methods, beneficial source instances representing the target have a fast and stochastic weight convergence, which results in “weight-drift” that negates transfer. In this paper, a framework is designed utilizing the “Rare-Transfer” (RT), a boosting-based TL algorithm, that prevents “weight-drift” and simultaneously addresses absolute-rarity in skin lesion datasets. RT prevents the weights of source samples from quick convergence. It addresses absolute-rarity using an instance transfer approach incorporating the best-fit set of auxiliary examples, which improves balanced error minimization. It compensates for class unbalance and scarcity of training samples in absolute-rarity simultaneously for inducing balanced error optimization.

Findings

Promising results are obtained utilizing the RT compared with state-of-the-art techniques on absolute-rare skin lesion datasets with an accuracy of 92.5%. Wilcoxon signed-rank test examines significant differences amid the proposed RT algorithm and conventional algorithms used in the experiment.

Originality/value

Experimentation is performed on absolute-rare four skin lesion datasets, and the effectiveness of RT is assessed based on accuracy, sensitivity, specificity and area under curve. The performance is compared with an existing ensemble and boosting-based TL methods.

Details

Data Technologies and Applications, vol. 57 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 16 February 2021

Saroj Kumar Pandey and Rekh Ram Janghel

According to the World Health Organization, arrhythmia is one of the primary causes of deaths across the globe. In order to reduce mortality rate, cardiovascular disease should be…

Abstract

Purpose

According to the World Health Organization, arrhythmia is one of the primary causes of deaths across the globe. In order to reduce mortality rate, cardiovascular disease should be properly identified and the proper treatment for the same should be immediately provided to the patients. The objective of this paper was to implement a better heartbeat classification model which will work better than the other implemented heartbeat classification methods.

Design/methodology/approach

In this paper, the ensemble of two deep learning models is proposed to classify the MIT-BIH arrhythmia database into four different classes according to ANSI-AAMI standards. First, a convolutional neural network (CNN) model is used to classify heartbeats on a raw data set. Secondly, four features (wavelets, R-R intervals, morphological and higher-order statistics) are extracted from the data set and then applied to a long short-term memory (LSTM) model to classify the heartbeats. Finally, the ensemble of CNN and LSTM model with sum rule, product rule and majority voting has been used to identify the heartbeat classes.

Findings

Among these, the highest accuracy obtained is 98.58% using ensemble method with product rule. The results show that the ensemble of CNN and BLSTM has offered satisfactory performance compared to other techniques discussed in this study.

Originality/value

In this study, we have developed a new combination of two deep learning models to enhance the performance of arrhythmia classification using segmentation of input ECG signals. The contributions of this study are as follows: First, a deep CNN model is built to classify ECG heartbeat using a raw data set. Second, four types of features (R-R interval, HOS, morphological and wavelet) were extracted from the raw data set and then applied to the bidirectional LSTM model to classify the ECG heartbeat. Third, combination rules (sum rules, product rules and majority voting rules) were tested to ensure the accumulated probabilities of the CNN and LSTM models.

Details

Data Technologies and Applications, vol. 55 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 20 November 2020

Sudeepa Das, Tirath Prasad Sahu and Rekh Ram Janghel

The purpose of this paper is to modify the crow search algorithm (CSA) to enhance both exploration and exploitation capability by including two novel approaches. The positions of…

Abstract

Purpose

The purpose of this paper is to modify the crow search algorithm (CSA) to enhance both exploration and exploitation capability by including two novel approaches. The positions of the crows are updated in two approaches based on awareness probability (AP). With AP, the position of a crow is updated by considering its velocity, calculated in a similar fashion to particle swarm optimization (PSO) to enhance the exploiting capability. Without AP, the crows are subdivided into groups by considering their weights, and the crows are updated by conceding leaders of the groups distributed over the search space to enhance the exploring capability. The performance of the proposed PSO-based group-oriented CSA (PGCSA) is realized by exploring the solution of benchmark equations. Further, the proposed PGCSA algorithm is validated over recently published algorithms by solving engineering problems.

Design/methodology/approach

In this paper, two novel approaches are implemented in two phases of CSA (with and without AP), which have been entitled the PGCSA algorithm to solve engineering benchmark problems.

Findings

The proposed algorithm is applied with two types of problems such as eight benchmark equations without constraint and six engineering problems.

Originality/value

The PGCSA algorithm is proposed with superior competence to solve engineering problems. The proposed algorithm is substantiated hypothetically by using a paired t-test.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 4 of 4