Search results

1 – 10 of 556
To view the access options for this content please click here
Book part
Publication date: 1 July 2015

Nikolay Markov

This chapter estimates a regime switching Taylor Rule for the European Central Bank (ECB) in order to investigate some potential nonlinearities in the forward-looking…

Abstract

This chapter estimates a regime switching Taylor Rule for the European Central Bank (ECB) in order to investigate some potential nonlinearities in the forward-looking policy reaction function within a real-time framework. In order to compare observed and predicted policy behavior, the chapter estimates Actual and Perceived regime switching Taylor Rules for the ECB. The former is based on the refi rate set by the Governing Council while the latter relies on the professional point forecasts of the refi rate performed by a large investment bank before the upcoming policy rate decision. The empirical evidence shows that the Central Bank’s main policy rate has switched between two regimes: in the first one the Taylor Principle is satisfied and the ECB stabilizes the economic outlook, while in the second regime the Central Bank cuts rates more aggressively and puts a higher emphasis on stabilizing real output growth expectations. Second, the results point out that the professional forecasters have broadly well predicted the actual policy regimes. The estimation results are also robust to using consensus forecasts of inflation and real output growth. The empirical evidence from the augmented Taylor Rules shows that the Central Bank has most likely not responded to the growth rates of M3 and the nominal effective exchange rate and the estimated regimes are robust to including these additional variables in the regressions. Finally, after the bankruptcy of Lehman Brothers the policy rate has switched to a crisis regime as the ECB has focused on preventing a further decline in economic activity and on securing the stability of the financial system.

Details

Monetary Policy in the Context of the Financial Crisis: New Challenges and Lessons
Type: Book
ISBN: 978-1-78441-779-6

Keywords

To view the access options for this content please click here
Article
Publication date: 5 April 2011

Peixin (Payton) Liu, Kuan Xu and Yonggan Zhao

This paper aims to extend the Fama and French (FF) three‐factor model in studying time‐varying risk premiums of Sector Select Exchange Traded Funds (ETFs) under a Markov…

Abstract

Purpose

This paper aims to extend the Fama and French (FF) three‐factor model in studying time‐varying risk premiums of Sector Select Exchange Traded Funds (ETFs) under a Markov regime‐switching framework.

Design/methodology/approach

First, the original FF model is augmented to include three additional macro factors – market volatility, yield spread, and credit spread. Then, the FF model is extended to a model with a Markov regime switching mechanism for bull, bear, and transition market regimes.

Findings

It is found that all market regimes are persistent, with the bull market regime being the most persistent, and the bear market regime being the least persistent. Both the risk premiums of the Sector Select ETFs and their sensitivities to the risk factors are highly regime dependent.

Research limitations/implications

The regime‐switching model has a superior performance in capturing the risk sensitivities of the Sector Select ETFs, that would otherwise be missed by both the FF and the augmented FF models.

Originality/value

This is the first research on Sector Select ETFs with Markov regime switching.

Details

International Journal of Managerial Finance, vol. 7 no. 2
Type: Research Article
ISSN: 1743-9132

Keywords

To view the access options for this content please click here
Book part
Publication date: 29 February 2008

Massimo Guidolin and Carrie Fangzhou Na

We address an interesting case – the predictability of excess US asset returns from macroeconomic factors within a flexible regime-switching VAR framework – in which the…

Abstract

We address an interesting case – the predictability of excess US asset returns from macroeconomic factors within a flexible regime-switching VAR framework – in which the presence of regimes may lead to superior forecasting performance from forecast combinations. After documenting that forecast combinations provide gains in predictive accuracy and that these gains are statistically significant, we show that forecast combinations may substantially improve portfolio selection. We find that the best-performing forecast combinations are those that either avoid estimating the pooling weights or that minimize the need for estimation. In practice, we report that the best-performing combination schemes are based on the principle of relative past forecasting performance. The economic gains from combining forecasts in portfolio management applications appear to be large, stable over time, and robust to the introduction of realistic transaction costs.

Details

Forecasting in the Presence of Structural Breaks and Model Uncertainty
Type: Book
ISBN: 978-1-84950-540-6

To view the access options for this content please click here
Book part
Publication date: 21 November 2014

Alex Maynard and Dongmeng Ren

We compare the finite sample power of short- and long-horizon tests in nonlinear predictive regression models of regime switching between bull and bear markets, allowing…

Abstract

We compare the finite sample power of short- and long-horizon tests in nonlinear predictive regression models of regime switching between bull and bear markets, allowing for time varying transition probabilities. As a point of reference, we also provide a similar comparison in a linear predictive regression model without regime switching. Overall, our results do not support the contention of higher power in longer horizon tests in either the linear or nonlinear regime switching models. Nonetheless, it is possible that other plausible nonlinear models provide stronger justification for long-horizon tests.

Details

Essays in Honor of Peter C. B. Phillips
Type: Book
ISBN: 978-1-78441-183-1

Keywords

To view the access options for this content please click here
Article
Publication date: 28 February 2020

Mobeen Ur Rehman and Nicholas Apergis

This study aims to investigate the impact of sentiment shocks based on US investor sentiments, bearish and bullish market conditions. Earlier studies, though very few…

Abstract

Purpose

This study aims to investigate the impact of sentiment shocks based on US investor sentiments, bearish and bullish market conditions. Earlier studies, though very few, only consider the effect of investor sentiments on stock returns of emerging frontier Asian (EFA) markets.

Design/methodology/approach

This study uses the application of regime switching model because of its capability to explore time-varying causality across different regimes unlike traditional linear models. The Markov regime switching model uses regime switching probabilities for capturing the potential asymmetries or non-linearity in a model, in this study’s case, thereby adjusting investor sentiments shocks to stock market returns.

Findings

The results of the Markov regime switching method suggests that US sentiment, bullish and bearish market shocks act as a main contributors for inducing variation in EFA stock market returns. The study’s non-parametric robustness results highlight an asymmetric relationship across the mean series, whereas a symmetric relationship across variance series. The study also reports Thailand as the most sensitive market to global sentiment shocks.

Research limitations/implications

The sensitivity of the EFA markets to these global sentiment shocks highlights their sensitivity and implications for investors relying merely on returns correlation and spillover. These findings also suggest that spillover from developed to emerging and frontier equity markets only in the form of returns following traditional linear models may not be appropriate.

Practical implications

This paper supports the behavioral aspect of investors and resultant spillover from developed market sentiments to emerging and frontier market returns across international equity markets offering more rational justification for an irrational behavior.

Originality/value

The study’s motivation to use the application of regime switching models is because of its capability to explore time-varying causality across different regimes unlike traditional linear models. The Markov regime switching model uses regime switching probabilities for capturing the potential asymmetries or non-linearity in a model, in the study’s case, thereby adjusting investor sentiments shocks to stock market returns. It is also useful of the adjustment attributable to exogenous events.

Details

Journal of Economic Studies, vol. 47 no. 3
Type: Research Article
ISSN: 0144-3585

Keywords

To view the access options for this content please click here
Article
Publication date: 23 July 2020

Yang Xiao

The purpose of this paper is to investigate regime-switching and single-regime GARCH models for the extreme risk forecast of the developed and the emerging crude oil markets.

Abstract

Purpose

The purpose of this paper is to investigate regime-switching and single-regime GARCH models for the extreme risk forecast of the developed and the emerging crude oil markets.

Design/methodology/approach

The regime-switching GARCH-type models and their single-regime counterparts are used in risk forecast of crude oil.

Findings

The author finds that the regime-switching GARCH-type models are suitable for the developed and the emerging crude oil markets in that they effectively measure the extreme risk of crude oil in different cases. Meanwhile, the model with switching regimes captures dynamic structures in financial markets, and these models are just only better than the corresponding single-regime in terms of long position risk forecast, instead of short position. That is, it just outperforms the single-regime on the downside risk forecast.

Originality/value

This study comprehensively compares risk forecast of crude oil in different situations through the competitive models. The obtained findings have strong implications to investors and policymakers for selecting a suitable model to forecast extreme risk of crude oil when they are faced with portfolio selection, asset allocation and risk management.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

To view the access options for this content please click here
Article
Publication date: 15 June 2010

Cuicui Luo, Luis A. Seco, Haofei Wang and Desheng Dash Wu

The purpose of this paper is to deal with the different phases of volatility behavior and the dependence of the variability of the time series on its own past, models

Abstract

Purpose

The purpose of this paper is to deal with the different phases of volatility behavior and the dependence of the variability of the time series on its own past, models allowing for heteroscedasticity like autoregressive conditional heteroscedasticity (ARCH), generalized autoregressive conditional heteroscedasticity (GARCH), or regime‐switching models have been suggested by reserachers. Both types of models are widely used in practice.

Design/methodology/approach

Both regime‐switching models and GARCH are used in this paper to model and explain the behavior of crude oil prices in order to forecast their volatility. In regime‐switching models, the oil return volatility has a dynamic process whose mean is subject to shifts, which is governed by a two‐state first‐order Markov process.

Findings

The GARCH models are found to be very useful in modeling a unique stochastic process with conditional variance; regime‐switching models have the advantage of dividing the observed stochastic behavior of a time series into several separate phases with different underlying stochastic processes.

Originality/value

The regime‐switching models show similar goodness‐of‐fit result to GARCH modeling, while has the advantage of capturing major events affecting the oil market. Daily data of crude oil prices are used from NYMEX Crude Oil market for the period 13 February 2006 up to 21 July 2009.

Details

Kybernetes, vol. 39 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

To view the access options for this content please click here
Article
Publication date: 2 July 2020

Canicio Dzingirai and Nixon S. Chekenya

The life insurance industry has been exposed to high levels of longevity risk born from the mismatch between realized mortality trends and anticipated forecast. Annuity…

Abstract

Purpose

The life insurance industry has been exposed to high levels of longevity risk born from the mismatch between realized mortality trends and anticipated forecast. Annuity providers are exposed to extended periods of annuity payments. There are no immediate instruments in the market to counter the risk directly. This paper aims to develop appropriate instruments for hedging longevity risk and providing an insight on how existing products can be tailor-made to effectively immunize portfolios consisting of life insurance using a cointegration vector error correction model with regime-switching (RS-VECM), which enables both short-term fluctuations, through the autoregressive structure [AR(1)] and long-run equilibria using a cointegration relationship. The authors also develop synthetic products that can be used to effectively hedge longevity risk faced by life insurance and annuity providers who actively hold portfolios of life insurance products. Models are derived using South African data. The authors also derive closed-form expressions for hedge ratios associated with synthetic products written on life insurance contracts as this will provide a natural way of immunizing the associated portfolios. The authors further show how to address the current liquidity challenges in the longevity market by devising longevity swaps and develop pricing and hedging algorithms for longevity-linked securities. The use of a cointergrating relationship improves the model fitting process, as all the VECMs and RS-VECMs yield greater criteria values than their vector autoregressive model (VAR) and regime-switching vector autoregressive model (RS-VAR) counterpart’s, even though there are accruing parameters involved.

Design/methodology/approach

The market model adopted from Ngai and Sherris (2011) is a cointegration RS-VECM for this enables both short-term fluctuations, through the AR(1) and long-run equilibria using a cointegration relationship (Johansen, 1988, 1995a, 1995b), with a heteroskedasticity through the use of regime-switching. The RS-VECM is seen to have the best fit for Australian data under various model selection criteria by Sherris and Zhang (2009). Harris (1997) (Sajjad et al., 2008) also fits a regime-switching VAR model using Australian (UK and US) data to four key macroeconomic variables (market stock indices), showing that regime-switching is a significant improvement over autoregressive conditional heteroscedasticity (ARCH) and generalised autoregressive conditional heteroscedasticity (GARCH) processes in the account for volatility, evidence similar to that of Sherris and Zhang (2009) in the case of Exponential Regressive Conditional Heteroscedasticity (ERCH). Ngai and Sherris (2011) and Sherris and Zhang (2009) also fit a VAR model to Australian data with simultaneous regime-switching across many economic and financial series.

Findings

The authors develop a longevity swap using nighttime data instead of usual income measures as it yields statistically accurate results. The authors also develop longevity derivatives and annuities including variable annuities with guaranteed lifetime withdrawal benefit (GLWB) and inflation-indexed annuities. Improved market and mortality models are developed and estimated using South African data to model the underlying risks. Macroeconomic variables dependence is modeled using a cointegrating VECM as used in Ngai and Sherris (2011), which enables both short-run dependence and long-run equilibrium. Longevity swaps provide protection against longevity risk and benefit the most from hedging longevity risk. Longevity bonds are also effective as a hedging instrument in life annuities. The cost of hedging, as reflected in the price of longevity risk, has a statistically significant effect on the effectiveness of hedging options.

Research limitations/implications

This study relied on secondary data partly reported by independent institutions and the government, which may be biased because of smoothening, interpolation or extrapolation processes.

Practical implications

An examination of South Africa’s mortality based on industry experience in comparison to population mortality would demand confirmation of the analysis in this paper based on Belgian data as well as other less developed economies. This study shows that to provide inflation-indexed life annuities, there is a need for an active market for hedging inflation in South Africa. This would demand the South African Government through the help of Actuarial Society of South Africa (ASSA) to issue inflation-indexed securities which will help annuities and insurance providers immunize their portfolios from longevity risk.

Social implications

In South Africa, there is an infant market for inflation hedging and no market for longevity swaps. The effect of not being able to hedge inflation is guaranteed, and longevity swaps in annuity products is revealed to be useful and significant, particularly using developing or emerging economies as a laboratory. This study has shown that government issuance or allowing issuance, of longevity swaps, can enable insurers to manage longevity risk. If the South African Government, through ASSA, is to develop a projected mortality reference index for South Africa, this would allow the development of mortality-linked securities and longevity swaps which ultimately maximize the social welfare of life assurance policy holders.

Originality/value

The paper proposes longevity swaps and static hedging because they are simple, less costly and practical with feasible applications to the South African market, an economy of over 50 million people. As the market for MLS develops further, dynamic hedging should become possible.

Details

The Journal of Risk Finance, vol. 21 no. 3
Type: Research Article
ISSN: 1526-5943

Keywords

Content available
Article
Publication date: 7 July 2020

Juho Valtiala

This study analyses agricultural land price dynamics in order to better understand price development and to improve forecast accuracy. Understanding the evolution of…

Abstract

Purpose

This study analyses agricultural land price dynamics in order to better understand price development and to improve forecast accuracy. Understanding the evolution of agricultural land prices is important when considering sound investment decisions.

Design/methodology/approach

This study applies threshold autoregression to model agricultural land prices. The data includes quarterly observations on Finnish agricultural land prices.

Findings

The study shows that Finnish agricultural land prices exhibit regime-switching behaviour when using past changes in prices as a threshold variable. The threshold autoregressive model not only fits the data better but also improves the accuracy of price forecasts compared to the linear autoregressive model.

Originality/value

The results show that a sharp fall in agricultural land prices temporarily changes the regular development of prices. This information significantly improves the accuracy of price predictions.

Details

Agricultural Finance Review, vol. 81 no. 2
Type: Research Article
ISSN: 0002-1466

Keywords

To view the access options for this content please click here
Article
Publication date: 12 August 2014

Kun-Huang Huarng

– The purpose of this paper is to propose an occurrence-based model to improve the forecasting of regime switches so as to assist decision making.

Abstract

Purpose

The purpose of this paper is to propose an occurrence-based model to improve the forecasting of regime switches so as to assist decision making.

Design/methodology/approach

This paper proposes a novel model where occurrences of relationships are taken into account when forecasting. Taiwan Stock Exchange Capitalization Weighted Stock Index is taken as the forecasting target.

Findings

Due to the consideration of occurrences of relationships in forecasting, the out of sample forecasting is improved.

Practical implications

The proposed model can be applied to forecast other time series for regime switches. In addition, it can be integrated with other time series models to improve forecasting performance.

Originality/value

The empirical results show that the proposed model can improve the forecasting performance.

1 – 10 of 556