Search results

1 – 10 of 688
Article
Publication date: 4 April 2016

Chun Sean Lau, C.Y. Khor, D. Soares, J.C. Teixeira and M.Z. Abdullah

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review…

1038

Abstract

Purpose

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed.

Design/methodology/approach

Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process.

Findings

With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed.

Practical implications

This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process.

Originality/value

The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2001

L. Yang, J.B. Bernstein and K. Chung

This paper will review the challenges brought by lead‐free soldering and some preliminary experimental evaluation results will be discussed. The initial results show that the…

Abstract

This paper will review the challenges brought by lead‐free soldering and some preliminary experimental evaluation results will be discussed. The initial results show that the lead‐free soldering process with 260°C reflow peak temperature does not directly cause failures for bismaleimide‐triazine (BT)‐based fine pitch ball grid array (FPBGA) packages. However, the strict lead‐free soldering condition could degrade the integrity of weak interface joints and potentially damage the package in subsequent unbiased highly accelerated stress test (unbiased HAST) evaluation. The impacts of lead‐free soldering with high reflow temperature on concurrent available electronics components could be more severe than previously believed. In the future, new materials and design concepts should be applied to enhance the package reliability under strict lead‐free soldering conditions.

Details

Microelectronics International, vol. 18 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 2001

M.R. Harrison, J.H. Vincent and H.A.H. Steen

Results for reflow soldering are presented from a three‐year EC funded project “IDEALS” to develop lead‐free soldering solutions. On the basis of fundamental data from the…

3488

Abstract

Results for reflow soldering are presented from a three‐year EC funded project “IDEALS” to develop lead‐free soldering solutions. On the basis of fundamental data from the literature, a shortlist of candidate lead‐free solders was selected, and results from tests on physical and soldering characteristics, and wetting balance testing, led to the choice of SnAg3.8Cu0.7, melting at 217°C. Implications for solder paste medium development are discussed. Differences in alloy density, melting point, and surface tension relative to conventional solders were found to give higher levels of internal voids, reduced spread on copper, and rougher, duller joints. Reflow process window studies showed that sound reliable joints could be obtained with a peak temperature as low as 225°C. Reliability was tested on soldered test boards using thermal shock cycling, power cycling, and vibration. Overall the SnAg3.8Cu0.7 gave results approximately equivalent to conventional solders, and different board finishes had no significant effect. The effects of Sb and Bi were also evaluated. No justification was found for minor additions of Sb, but 2‐5 per cent Bi was found to allow a reduction of the peak reflow temperature, though at the cost of reduced reliability if any Pb was present.

Details

Soldering & Surface Mount Technology, vol. 13 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 2005

Sven Lamprecht

This paper describes the different thickness measurement techniques that enable reliable thickness assessments, and the determination of the recommended immersion tin thickness…

Abstract

Purpose

This paper describes the different thickness measurement techniques that enable reliable thickness assessments, and the determination of the recommended immersion tin thickness for lead‐free soldering.

Design/methodology/approach

Immersion tin layers were prepared with systematically varying layer thicknesses. The samples were annealed at different reflow profiles, used in assembly for tin/silver/copper (SAC‐alloy) soldering. The layers were characterized with X‐ray fluorescence, electrochemical stripping coulometry, and by examining the cross sections using a scanning electron microscope. The solderability of the samples was determined with a solder balance (Solderability Tester Menisco ST60) using a SAC‐alloy (melting point 217°C) with T(max) at ΔT=28°C and ΔT=43°C above melting.

Findings

If all pure tin is converted into the Sn/Cu IMC, so that no pure tin is left as solderable layer, the wetting behaviour will decrease dramatically. Especially for multiple soldering processes, two times reflow followed by wave soldering, it is essential to have a pure tin layer covering the Sn/Cu IMC before going to the final soldering process. The required amount of residual pure tin over the Sn/Cu IMC is detailed in several papers. It is stated that a minimum of 0.2 μm of pure tin over the Sn/Cu IMC is absolutely necessary to ensure reliable wetting and solder joint formation. With the current immersion tin thickness recommendation of 1 μm, based on the needs of lead containing solder pastes, a residual pure tin layer will not be evident or thick enough to ensure reliable assembly for multiple soldering with lead‐free temperature profiles.

Originality/value

Helps to enable reliable thickness assessments, and the determination of the recommended immersion tin thickness for lead‐free soldering.

Details

Circuit World, vol. 31 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 April 2004

Joe Smetana, Rob Horsley, John Lau, Ken Snowdon, Dongkai Shangguan, Jerry Gleason, Irv Memis, Dave Love, Walter Dauksher and Bob Sullivan

The High Density Packaging Users Group conducted a substantial study of the solder joint reliability of high‐density packages using lead‐free solder. The design, material, and…

Abstract

The High Density Packaging Users Group conducted a substantial study of the solder joint reliability of high‐density packages using lead‐free solder. The design, material, and assembly process aspects of the project are addressed in this paper. The components studied include many surface mount technology package types, various lead, and printed circuit board finishes and paste‐in‐hole assembly.

Details

Soldering & Surface Mount Technology, vol. 16 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 26 July 2013

Chun‐Sean Lau, M.Z. Abdullah and C.Y. Khor

Reflow soldering is one of the most significant factors in determining solder joint defect rate. This study aims to introduce an innovative approach for optimizing the multiple…

Abstract

Purpose

Reflow soldering is one of the most significant factors in determining solder joint defect rate. This study aims to introduce an innovative approach for optimizing the multiple performances of the reflow soldering process.

Design/methodology/approach

This study aims to minimize the solder joint defect rate of a ball grid array (BGA) package by using the grey‐based Taguchi method. The entropy measurement method was employed together with the grey‐based Taguchi method to compute for the weights of each quality characteristic. The Taguchi L18 orthogonal array was performed, and the optimal parameter settings were determined. Various factors, such as slope, temperature, and reflow profile time, as well as two extreme noise factors, were considered. The thermal stress, peak temperature, reflow time, board‐ and package‐level temperature uniformity were selected as the quality characteristics. These quality characteristics were determined using the numerical method. The numerical method comprises the internal computational flow that models the reflow oven coupled with the structural heating and cooling models of the BGA assembly. The Multi‐physics Code Coupling Interface was used as the coupling software.

Findings

The analysis of variance results reveals that the cooling slope was the most influential factor among the multiple quality characteristics, followed by the soaking temperature and the peak temperature. Experimental confirmation test results show that the performance characteristics improved significantly during the reflow soldering process.

Practical implications

The proposed approach greatly reduces solder joint defects and enhances solutions to lead‐free reliability issues in the electronics manufacturing industry.

Originality/value

The findings provide new guidelines to the optimization method which are very useful for the accurate control of the solder joint defect rate within components and printed circuit board (PCB) which is one of the major requirements to achieve high reliability of electronic assemblies.

Article
Publication date: 1 June 2005

Joon Kwon Moon, Y. Zhou and Jae Pil Jung

To investigate fluxless plasma ball bumping and effect of under bump metallization (UBM) thickness on joint properties using lead‐free solders.

Abstract

Purpose

To investigate fluxless plasma ball bumping and effect of under bump metallization (UBM) thickness on joint properties using lead‐free solders.

Design/methodology/approach

A fluxless soldering process was investigated in this study using Ar‐10 percent H2 plasma reflow. Balls made from two lead‐free solders (Sn‐3.5 weight percent Ag and Sn‐3.5 weight percent Ag‐0.7 weight percent Cu) were reflowed and, also Sn‐37 weight percent Pb as a reference. In particular, the effects of the UBM thickness on the interfacial metallurgical bonding and joint strength were studied. The UBM (Au/Cu/Ni/Al layers) thicknesses were 20 nm/0.3 μm/0.4 μm/0.4 μm and 20 nm/4 μm/4 μm/0.4 μm, respectively.

Findings

The experimental results showed that in the case of a thin UBM the shear strengths of the soldered joints were relatively low (about 19‐27 MPa) due to cracks observed along the bond interfaces. The thick UBM improved joint strength to 32‐42 MPa as the consumption of the Cu and Ni layers by reaction with the solder was reduced and hence the interfacial cracks were avoided. To provide a benchmark, reflow of the solders in air using flux was also carried out.

Originality/value

This paper provides information about the effect of UBM thickness on joint strength for plasma fluxless soldering to researchers and engineers.

Details

Soldering & Surface Mount Technology, vol. 17 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 2005

Girish S. Wable, Quyen Chu, Purushothaman Damodaran and Krishnaswami Srihari

Historically, tin‐lead solder has been a commonly used joining material in electronics manufacturing. Environmental and health concerns, due to the leaching of lead from landfills…

Abstract

Purpose

Historically, tin‐lead solder has been a commonly used joining material in electronics manufacturing. Environmental and health concerns, due to the leaching of lead from landfills into ground water, have necessitated legislation that restricts the use of lead in electronics. The transition from tin‐lead solder to a lead‐free solder composition is imminent. Several alternative solder alloys (and their fluxes) have been researched for electronics assembly in the last few years. The objective of this research was to develop a systematic selection process for choosing a “preferred” lead‐free solder paste, based on its print and reflow performance.

Design/methodology/approach

After a detailed study of industry preferences, published experimental data, and recommendations of various industrial consortia, a near eutectic tin‐silver‐copper (SAC) composition was selected as the preferred alloy for evaluation. Commercially available SAC solder pastes with a no‐clean chemistry were extensively investigated in a simulated manufacturing environment. A total of nine SAC pastes from seven manufacturers were evaluated in this investigation. A eutectic Sn/Pb solder paste was used as a baseline for comparison. While selecting the best lead‐free paste, it was noted that the selected paste has to perform as good as, if not better than, the current tin‐lead paste configuration used in electronics manufacturing for a particular application. The quality of the solder pastes was characterized by a series of analytical and assembly process tests consisting of, but not limited to, a printability test, a solder ball test, a slump test, and post reflow characteristics such as the tendency to form voids, self‐centring and wetting ability.

Findings

Each paste was evaluated for desirable and undesirable properties. The pastes were then scored relative to each other in each individual test. An aggregate of individual test scores determined the best paste.

Originality/value

This paper summarizes a systematic approach adopted to evaluate lead‐free solder pastes for extreme reflow profiles expected to be observed in reflow soldering lead‐free boards.

Details

Soldering & Surface Mount Technology, vol. 17 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2002

Richard Ludwig, Ning‐Cheng Lee, Chonglun Fan and Yun Zhang

Two new electrolytically plated lead‐free surface finishes are evaluated for their wettability, bond strength, and voiding performance, and are compared with electrolytic nickel…

Abstract

Two new electrolytically plated lead‐free surface finishes are evaluated for their wettability, bond strength, and voiding performance, and are compared with electrolytic nickel gold and an OSP. The results indicate that Ni–Sn achieve the highest wettability, one of the highest lap shear strengths, and the lowest levels of voiding. It also performs better under a long reflow profile. Under most instances, the soldering performance is comparable with, or better than, the reference OSP and Ni–Au surface finishes. Ni–PdCo–Au was found to give a poor wettability, fairly low lap shear strength, and have high levels of voiding. However, it is fairly stable, and its soldering performance is not sensitive to the reflow profile length or atmosphere, aging treatment, or flux chemistry. OSP was found to be the poorest in terms of wettability, but one of the best for lap shear strength. It also performs best under long profile, is not sensitive to reflow atmosphere, is slightly sensitive to alloy type, but is very sensitive to aging and flux chemistry.

Details

Soldering & Surface Mount Technology, vol. 14 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2005

Z.W. Zhong, P. Arulvanan and X.Q. Shi

To study the effects of design and assembly process conditions on lead‐free solder joints for an area array component.

Abstract

Purpose

To study the effects of design and assembly process conditions on lead‐free solder joints for an area array component.

Design/methodology/approach

Experiments using SnAgCu solder for assembling plastic ball grid array components on printed circuit boards (PCBs) were carried out to investigate the reliability of the solder joints made under various conditions. The process variables studied include solder pad diameters, solder paste volume and reflow peak temperatures.

Findings

The average joint diameter increased with the peak reflow temperature, stencil thickness and pad diameter. The average joint height decreased with the increasing peak reflow temperature and pad diameter. However, increased stencil thickness would lead to increased solder paste volume and therefore increases both joint diameter and height. The assembled boards were subjected to a temperature cycling test (−40 to +125°C) for 5,700 cycles and no failures of the daisy chained resistance loops were found, indicating that the thermal fatigue resistance of the SnAgCu solder joints was good.

Originality/value

The findings provide greater confidence to implement a lead‐free soldering process without compromising reliability. Reliable lead free soldering can be made over a wide process window allowing flexibility in design and manufacturing.

Details

Soldering & Surface Mount Technology, vol. 17 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 688