Search results

1 – 10 of 10
Article
Publication date: 2 January 2024

Fernando Peña, José Carlos Rico, Pablo Zapico, Gonzalo Valiño and Sabino Mateos

The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM…

82

Abstract

Purpose

The purpose of this paper is to provide a new procedure for in-plane compensation of geometric errors that often appear in the layers deposited by an additive manufacturing (AM) process when building a part, regardless of the complexity of the layer geometry.

Design/methodology/approach

The procedure is based on comparing the real layer contours to the nominal ones extracted from the STL model of the part. Considering alignment and form deviations, the compensation algorithm generates new compensated contours that match the nominal ones as closely as possible. To assess the compensation effectiveness, two case studies were analysed. In the first case, the parts were not manufactured, but the distortions were simulated using a predictive model. In the second example, the test part was actually manufactured, and the distortions were measured on a coordinate measuring machine.

Findings

The geometric deviations detected in both case studies, as evaluated by various quality indicators, reduced significantly after applying the compensation procedure, meaning that the compensated and nominal contours were better matched both in shape and size.

Research limitations/implications

Although large contours showed deviations close to zero, dimensional overcompensation was observed when applied to small contours. The compensation procedure could be enhanced if the applied compensation factor took into account the contour size of the analysed layer and other geometric parameters that could have an influence.

Originality/value

The presented method of compensation is applicable to layers of any shape obtained in any AM process.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 September 2023

Ruifeng Li and Wei Wu

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This…

102

Abstract

Purpose

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This paper aims to propose a collision-free following system for robot to track humans in corridors without a prior map.

Design/methodology/approach

In addition to following a target and avoiding collisions robustly, the proposed system calculates the positions of walls in the environment in real-time. This allows the system to maintain a stable tracking of the target even if it is obscured after turning. The proposed solution is integrated into a four-wheeled differential drive mobile robot to follow a target in a corridor environment in real-world.

Findings

The experimental results demonstrate that the robot equipped with the proposed system is capable of avoiding obstacles and following a human target robustly in the corridors. Moreover, the robot achieves a 90% success rate in maintaining a stable tracking of the target after the target turns around a corner with high speed.

Originality/value

This paper proposes a human target following system incorporating three novel features: a path planning method based on wall positions is introduced to ensure stable tracking of the target even when it is obscured due to target turns; improvements are made to the random sample consensus (RANSAC) algorithm, enhancing its accuracy in calculating wall positions. The system is integrated into a four-wheeled differential drive mobile robot effectively demonstrates its remarkable robustness and real-time performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 12 April 2022

Hüseyin Emre Ilgın, Markku Karjalainen and Sofie Pelsmakers

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

3017

Abstract

Purpose

This study examined data from 13 international tall residential timber building case studies to increase our understanding of the emerging global trends.

Design/methodology/approach

Data were collected through literature surveys and case studies to examine the architectural, structural and constructional points of view to contribute to knowledge about the increasing high-rise timber constructions globally.

Findings

The main findings of this study indicated that: (1) central cores were the most preferred type 10 of core arrangements; (2) frequent use of prismatic forms with rectilinear plans and regular extrusions were identified; (3) the floor-to-floor heights range between 2.81 and 3.30 m with an average of 3 m; (4) the dominance of massive timber use over hybrid construction was observed; (5) the most used structural system was the shear wall system; (6) generally, fire resistance in primary and secondary structural elements exceeded the minimum values specified in the building codes; (7) the reference sound insulation values used for airborne and impact sounds had an average of 50 and 56 dB, respectively.

Originality/value

There is no study in the literature that comprehensively examines the main architectural and structural design considerations of contemporary tall residential timber buildings.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 6
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

18

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 March 2024

Hisham Said, Aswathy Rajagopalan and Daniel M. Hall

Cross-laminated timber (CLT) is an innovative construction material that provides a balanced mix of structural stiffness, fabrication flexibility and sustainability. CLT…

Abstract

Purpose

Cross-laminated timber (CLT) is an innovative construction material that provides a balanced mix of structural stiffness, fabrication flexibility and sustainability. CLT development and innovation diffusion require close collaborations between its supply chain architectural, engineering, construction and manufacturing (AECM) stakeholders. As such, the purpose of this study is to provide a preliminary understanding of the knowledge diffusion and innovation process of CLT construction.

Design/methodology/approach

The study implemented a longitudinal social network analysis of the AECM companies involved in 100 CLT projects in the UK. The project data were acquired from an industry publication and decoded in the form of a multimode project-company network, which was projected into a single-mode company collaborative network. This complete network was filtered into a four-phase network to allow the longitudinal analysis of the CLT collaborations over time. A set of network and node social network analysis metrics was used to characterize the topology patters of the network and the centrality of the companies.

Findings

The study highlighted the scale-free structure of the CLT collaborative network that depends on the influential hubs of timber manufacturers, engineers and contractors to accelerate the innovation diffusion. However, such CLT supply collaborative network structure is more vulnerable to disruptions due to its dependence on these few prominent hubs. Also, the industry collaborative network’s decreased modularity confirms the maturity of the CLT technology and the formation of cohesive clusters of innovation partners. The macro analysis approach of the study highlighted the critical role of supply chain upstream stakeholders due to their higher centralities in the collaborative network. Stronger collaborations were found between the supply chain upstream stakeholders (timber manufacturers) and downstream stakeholders (architects and main contractors).

Originality/value

The study contributes to the field of industrialized and CLT construction by characterizing the collaborative networks between CLT supply chain stakeholders that are critical to propose governmental policies and industry initiatives to advance this sustainable construction material.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 4 April 2022

Irappa Basappa Hunagund, Madhusudanan Pillai and Kempaiah U.N.

The purpose of this article is to develop a bi-directional relaxed flexible bay structure (BRFBS) in the layout for the unequal area facility layout problems (UA-FLPs) and test…

Abstract

Purpose

The purpose of this article is to develop a bi-directional relaxed flexible bay structure (BRFBS) in the layout for the unequal area facility layout problems (UA-FLPs) and test the suitability of the proposed approach using literature data.

Design/methodology/approach

This research adopts a two-stage solution approach for UA-FLPs to form BRFBS in the layout. The solution to UA-FLPs is carried out in discrete space. The proposed heuristic method optimises the layout plan for minimising the material handling cost (MHC), and also, it indirectly optimises the space utilisation by reducing the empty space in the layout. The first stage of layout design assumes that all facilities are equal in size and uses quadratic assignment problem (QAP) model. QAP is solved with a simulated annealing heuristic method. In the second stage, a heuristic method is proposed to find the optimum width for each bay and the dimension for facilities. The proposed heuristic method is tested with numerical data available in the literature. Results are compared with the results obtained by layout planning software, and with the simulated annealing algorithm for flexible bay structure (SA-FBS) heuristic procedure for continuous space UA-FLPs.

Findings

The proposed two-stage solution approach gives the BRFBS for the UA-FLPs. BRFBS helps to create proper aisle structure in the layout plan. The layout configuration and solution of the proposed method is better than the layout planning software solution and SA-FBS solution. The application of the proposed heuristic method to case data gave lesser MHC, better space utilisation and better aisle formation than the existing layout.

Research limitations/implications

The proposed approach has the limitation that it can be applied only to UA-FLPs solved in discrete space. When the UA-FLPs are solved in continuous space, then it is not possible to make application of this approach to form bi-directional relaxed flexible bays in the layout plan.

Practical implications

Most of the modern industries are automated, and they use material handling equipment (MHE) like automated guided vehicles (AGVs). Design of layout plans that help to create proper aisle structure for AGV’s in the layout plan is a challenging to the researchers. The BRFBS configuration is more suitable in the flexible manufacturing system where AGVs are used for material transportation.

Originality/value

This paper proposes a novel two-stage heuristic method for solving the UA-FLPs in discrete space. The proposed approach generates a BRFBS in the layout plan. The BRFBS helps to create a proper aisle structure suitable for better material handling operations. Hence, this type of layout helps in easy interaction of the MHE (e.g. AGVs) with the boundaries of the facilities touching the aisle.

Details

Journal of Facilities Management , vol. 21 no. 5
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 1 November 2022

Zihao Zheng, Yuanqi Li and Jaume Torres

This paper aims to propose a generative design method combined with meta-heuristic algorithm for automating and optimizing the floor layout of modular buildings using typical…

Abstract

Purpose

This paper aims to propose a generative design method combined with meta-heuristic algorithm for automating and optimizing the floor layout of modular buildings using typical standardized module units, which are the room module, the corridor module and the stair module.

Design/methodology/approach

The integrated framework involves the generative design method and optimization for modular construction. The generative rules are provided by geometric relationships and functionalities of the module units. An evaluation function of the generated floor plans is also presented by the combination of project cost and cost penalties for the geometric features. The multi-population genetic algorithm (MPGA) method is provided for the optimization of the combination of costs.

Findings

The proposed MPGA method is demonstrated fast and efficient at discovering the globally optimal solution. The results indicate that when the unit price of modules is high, the transportation distance is long, or the land cost is high, the layout cost, which related to the symmetry, the compactness and the energy is tend to be lower, making the optimal layout economical.

Originality/value

This paper presented an integrated framework of generative floor layout and optimization for modular construction by using typical module units. It fulfills the need for automated layout generation with repetitive units and corresponding assessment during the early design stage.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 28 August 2023

Shekhar Sharma, Saurav Datta, Tarapada Roy and Siba Sankar Mahapatra

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based…

Abstract

Purpose

Fused filament fabrication (FFF) is a type of additive manufacturing (AM) based on materials extrusion. It is the most widely practiced AM route, especially used for polymer-based rapid prototyping and customized product fabrication in relation to aerospace, automotive, architecture, consumer goods and medical applications. During FFF, part quality (surface finish, dimensional accuracy and static mechanical strength) is greatly influenced by several process parameters. The paper aims to study FFF parametric influence on aforesaid part quality aspects. In addition, dynamic analysis of the FFF part is carried out.

Design/methodology/approach

Interpretive structural modelling is attempted to articulate interrelationships that exist amongst FFF parameters. Next, a few specimens are fabricated using acrylonitrile butadiene styrene plastic at varied build orientation and build style. Effects of build orientation and build style on part’s ultimate tensile strength, flexure strength along with width build time are studied. Prototype beams (of different thickness) are fabricated by varying build style. Instrumental impact hammer Modal analysis is performed on the cantilever beams (cantilever support) to obtain the natural frequencies (first mode). Parametric influence on natural frequencies is also studied.

Findings

Static mechanical properties (tensile and flexure strength) are greatly influenced by build style and build orientation. Natural frequency (NF) of prototype beams is highly influenced by the build style and beam thickness.

Originality/value

FFF built parts when subjected to application, may have to face a variety of external dynamic loads. If frequency of induced vibration (due to external force) matches with NF of the component part, resonance is incurred. To avoid occurrence of resonance, operational frequency (frequency of externally applied forces) must be lower/ higher than the NF. Because NF depends on mass and stiffness, and boundary conditions, FFF parts produced through varying build style may definitely correspond to varied NF. This aspect is explained in this work.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 December 2023

Prashant Anerao, Atul Kulkarni and Yashwant Munde

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Abstract

Purpose

This paper aims to investigate the current state of biocomposites used in fused deposition modelling (FDM) with a focus on their mechanical characteristics.

Design/methodology/approach

The study presents a variety of biocomposite materials that have been used in filaments for 3D printing by different researchers. The process of making filaments is then described, followed by a discussion of the process parameters associated with the FDM.

Findings

To achieve better mechanical properties of 3D-printed parts, it is essential to optimize the process parameters of FDM while considering the characteristics of the biocomposite material. Polylactic acid is considered the most promising matrix material due to its biodegradability and lower cost. Moreover, the use of natural fibres like hemp, flax and sugarcane bagasse as reinforcement to the polymer in FDM filaments improves the mechanical performance of printed parts.

Originality/value

The paper discusses the influence of critical process parameters of FDM like raster angle, layer thickness, infill density, infill pattern and extruder temperature on the mechanical properties of 3D-printed biocomposite.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 31 October 2023

Alberto Giubilini and Paolo Minetola

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of…

Abstract

Purpose

The purpose of this study is to evaluate the 3D printability of a multimaterial, fully self-supporting auxetic structure. This will contribute to expanding the application of additive manufacturing (AM) to new products, such as automotive suspensions.

Design/methodology/approach

An experimental approach for sample fabrication on a multiextruder 3D printer and characterization by compression testing was conducted along with numerical simulations, which were used to support the design of different auxetic configurations for the jounce bumper.

Findings

The effect of stacking different auxetic cell modules was discussed, and the findings demonstrated that a one-piece printed structure has a better performance than one composed of multiple single modules stacked on top of each other.

Research limitations/implications

The quality of the 3D printing process affected the performance of the final components and reproducibility of the results. Therefore, researchers are encouraged to further study component fabrication optimization to achieve a more reliable process.

Practical implications

This research work can help improve the manufacturing and functionality of a critical element of automotive suspension systems, such as the jounce bumper, which can efficiently reduce noise, vibration and harshness by absorbing impact energy.

Originality/value

In previous research, auxetic structures for the application of jounce bumpers have already been suggested. However, to the best of the authors’ knowledge, in this work, an AM approach was used for the first time to fabricate multimaterial auxetic structures, not only by co-printing a flexible thermoplastic polymer with a stiffer one but also by continuously extruding multilevel structures of auxetic cell modules.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 10