Search results

1 – 10 of 181
Article
Publication date: 11 April 2016

Xibing Li, Tian Cheng, Ming Li, Mingjian Li, Ruren Wu and Yingsi Wan

This paper aims to research the lubrication performance of large-size rectangular oil pad in hydrostatic thrust bearing for heavy computer numerical control (CNC) vertical lathe.

Abstract

Purpose

This paper aims to research the lubrication performance of large-size rectangular oil pad in hydrostatic thrust bearing for heavy computer numerical control (CNC) vertical lathe.

Design/methodology/approach

The research establishes the mathematical models of velocity, flux and pressure fields, etc., for lubrication performance distribution, and analyzes its load-bearing behavior.

Findings

When hydrostatic thrust bearing’s rotating speed is within ω12, the oil flow generated by plate’s relative motion is greater than that generated by pressure difference and centrifugal force, and in the opposite direction, making it not easy to emit friction heat, so the rotating speed range ω12 should be avoided for bearing.

Originality/value

The research provides powerful theoretical basis for the structure design, operating reliability and practical application of large size rectangular oil pad hydrostatic thrust bearing, and realizing the prediction of its lubrication performance.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2018

Xibing Li, Weixiang Li, Xueyong Chen, Ming Li, Huayun Chen and Xin Yue

The purpose of this paper is to examine the effect of application of a heat pipe in an aspect of hydrostatic thrust bearings on thermal balance and deformation and the role of…

Abstract

Purpose

The purpose of this paper is to examine the effect of application of a heat pipe in an aspect of hydrostatic thrust bearings on thermal balance and deformation and the role of this application in increasing the rotating speed of a workbench.

Design/methodology/approach

Numerical simulations of oil film temperature field, the temperature field and thermal deformation of the bearing’s workbench and base were performed by finite element analysis (FEA) software for both the traditional hydrostatic thrust bearings and the heat pipe ones.

Findings

Oil pad and workbench of the hydrostatic thrust bearings are fabricated with a heat pipe cooling structure, which can take away most of the heat generated by shearing of the oil film, control the temperature rise and thermal deformation of the hydrostatic thrust bearing effectively, avoid the dry friction phenomenon and finally improve the processing quality of equipment.

Originality/value

The heat pipe hydrostatic thrust bearings could control the temperature rise and thermal deformation of the hydrostatic thrust bearing effectively, avoid the dry friction phenomenon and improve the processing quality of equipment.

Details

Industrial Lubrication and Tribology, vol. 70 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 August 2022

Shiqian Ni, Yanqin Zhang, Jiabao Li and Ye Wu

To solve the problem of oil film thinning when hydrostatic thrust bearings are overloaded or rotating at high speed, the dynamic pressure formed by tiny oil wedges is used to…

Abstract

Purpose

To solve the problem of oil film thinning when hydrostatic thrust bearings are overloaded or rotating at high speed, the dynamic pressure formed by tiny oil wedges is used to compensate, and the optimum height of oil wedges is determined by the compensation rate to improve the bearing capacity of hydrostatic thrust bearings.

Design/methodology/approach

This research method is aimed at the new type of double rectangular cavity static bearing with microbevel surface of q1-205. The wedge parameters of oil film were defined. The oil film lubrication performance of the bearing with the wedge parameters of 0, 0.02, 0.04, 0.06, 0.08 and 0.10 mm was simulated by the finite volume method, the comprehensive influence law of the wedge-shaped parameters on the vorticity and flow rate of the oil cavity pressure fluid was revealed. Finally, the oil cavity pressure changes of oil films with different wedge parameters under certain load and speed were tested by design experiments, and the theoretical analysis and simulation were verified.

Findings

This study found that the oil film wedge shape can well compensate the static pressure loss caused by the high-speed or heavy-duty operation of the bearing, but the dynamic pressure effect of the wedge shape does not always increase with the increase of the wedge height. The oil film exhibits superior lubrication performance in the range of 0.06–0.08 mm.

Originality/value

The original hydrostatic oil pad was designed as a microinclined plane, and the dynamic pressure caused by the microwedge of the oil pad was used to compensate the static pressure loss of the bearing. The lubrication performance of the oil film under the condition of varying viscosity was obtained by using the simulation method.

Details

Industrial Lubrication and Tribology, vol. 74 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 May 2023

Weifeng Liu, Xiaodong Yang, Xianli Liu, Jian Zhang, Feilin Liu, Shengguo Yang and Lin Zeng

The purpose of this paper is to analyze the variation of temperature field, pressure field and deformation of hydrostatic thrust bearing under different working conditions, so as…

Abstract

Purpose

The purpose of this paper is to analyze the variation of temperature field, pressure field and deformation of hydrostatic thrust bearing under different working conditions, so as to provide a theoretical basis for improving accuracy and reliability.

Design/methodology/approach

In this study, the double rectangular hydrostatic bearing of type Q1-224 was selected as the research object, and the simulation was carried out according to different working conditions, and the obtained data were summarized regularly.

Findings

It is found that the overall temperature of hydrostatic bearing increases with the increase of speed and load, and the increase in load will result in a larger pressure distribution which first increases and then decreases with the speed. The deformation trend of the deformation field is found, and it is found that the force deformation is larger than the thermal deformation at low rotational speed, and the thermal deformation is larger than the force deformation at high rotational speed.

Originality/value

In this study, the fluid-structure coupling method of conjugate heat transfer is applied to study the whole hydrostatic bearing. Most of the previous studies only studied the oil film and considered the influence of the convective heat transfer between the hydrostatic bearing and the air in heat transfer, which is rarely seen in the previous research literature.

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2018

Yumo Wang, Zhifeng Liu, Ligang Cai and Qiang Cheng

This paper aims to study the nonlinear supporting performance of hydrostatic ram under the impact of cutting force and search for an optimal solution to improve its stiffness.

Abstract

Purpose

This paper aims to study the nonlinear supporting performance of hydrostatic ram under the impact of cutting force and search for an optimal solution to improve its stiffness.

Design/methodology/approach

The Reynolds equation was applied to resolve the carrying capability of a single oil pad numerically, and an iteration method was used to analyze the nonlinear supporting force and stiffness of a pair of oil pads placed face-to-face. The total offset of ram could be obtained after the displacement of aspectant oil pads was solved by the bisection method. From the comparison of the offset values of ram evaluated under different support conditions, the optimal solution was determined.

Findings

In this study, an optimized oil supply allocation, concluded as 1.16:0.84, is proposed to improve the performance of hydrostatic ram supporting structure.

Originality/value

The supporting performance of hydrostatic ram could be improved by appropriate allocation of oil supply without extra energy consumption.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 October 2018

Yanqin Zhang, Zhiquan Zhang, Xiangbin Kong, Rui Li and Hui Jiang

The purpose of this paper was to obtain the lubrication characteristics of heavy hydrostatic bearing in heavy equipment manufacturing industry through theoretical analysis and…

Abstract

Purpose

The purpose of this paper was to obtain the lubrication characteristics of heavy hydrostatic bearing in heavy equipment manufacturing industry through theoretical analysis and numerical simulation.

Design/methodology/approach

This paper discusses the influence of oil film thickness variation on velocity field, outlet-L and outlet-R flow velocity under the hydrostatic bearing running in no-load 0 N, load 400 KN, full load 1,500 KN and rotating speeds of 10 r/min, 20 r/min, 30 r/min, 40 r/min, 50 r/min and 60 r/min, by using dynamic mesh technology and FLUENT software.

Findings

When the working table rotates clockwise, in the change process of oil film thickness, the fluid flow pattern of the lubricating oil at the edge of the sealing oil is the rule of laminar flow, and the oil cavity has a vortex. The outlet-R flow velocity becomes higher and higher by increasing the bearing load and working table speed, and the flow velocity increases with the decrease in oil film thickness; the outlet-L flow velocity increases with the decrease in oil film thickness under low rotating speed (less than 10 r/min) condition and decreases with the decrease of oil film thickness under high rotating speed (more than 60 r/min) condition.

Originality/value

The influence of the oil film thickness on the flow state distribution of the oil film was analyzed under different working conditions, and the influence rules of oil film thickness on the flow velocity of hydrostatic bearing oil pad was obtained by using dynamic mesh technology.

Details

Industrial Lubrication and Tribology, vol. 71 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Zhiwei Wang, Yi Liu and Feng Wang

The purpose of this paper is to establish a simplified model of the closed hydrostatic guideway for the rapid analysis of static and dynamic characteristics. Further, the…

Abstract

Purpose

The purpose of this paper is to establish a simplified model of the closed hydrostatic guideway for the rapid analysis of static and dynamic characteristics. Further, the influence of compressibility and dynamic frequency are taken into consideration in the new dynamic model.

Design/methodology/approach

The new model is based on the second kind of Lagrange equation. In this model, the closed hydrostatic guideway is supported by 12 pads, and each oil pad is equivalent to a nonlinear spring-damper system. The equivalent spring coefficient and damper coefficient of the oil pad are extracted by the three different equivalent methods. Finally, the validation experiments of step load response and dynamic stiffness are conducted on a hydrostatic guideway.

Findings

For solving the step response, the linear spring-damper model and the nonlinear spring-damper Model 1 are better than the nonlinear spring-damper Model 2. The accuracy of the three methods are very high for static stiffness calculation. For the calculation of dynamic stiffness, the nonlinear spring-damper Model 2 is better than the nonlinear spring-damper Model 1. The linear spring-damper model has low precision for dynamic stiffness calculation, especially at high frequency. The accuracy of the new model is validated by experiments.

Originality/value

The equivalent method of nonlinear spring-damper system has higher accuracy. Different equivalent methods should be adopted for different load types. The computational speeds of the new dynamic model with the three methods are much better than finite element method (about ten times).

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 November 2017

Jun Zha, Yaolong Chen and Penghai Zhang

The form error of shaft and hole parts is inevitable because of the machining error caused by rotation error of tool axis in machine tools where the elliptical form error is the…

Abstract

Purpose

The form error of shaft and hole parts is inevitable because of the machining error caused by rotation error of tool axis in machine tools where the elliptical form error is the most common in shaft and bearing bush. The purpose of this paper is to present the relationship between the elliptical form error and rotation accuracy for hydrostatic journal bearing in precision spindle and rotation table.

Design/methodology/approach

An error averaging effect model of hydrostatic journal bearing is established by using Reynolds equation, pressure boundary conditions, flux continuity equation of the land and kinetic equation of shaft in hydrostatic journal bearing. The effects of shaft and bearing bush on rotation accuracy were analyzed quantitatively.

Findings

The results reveal that the effect of shaft elliptical form error on rotation accuracy was six times larger than bearing bush. Therefore, to improve the rotation accuracy of hydrostatic journal bearing in spindle or rotation table, the machining error of shaft should be controlled carefully.

Originality/value

An error averaging model is proposed to evaluate the effect of an elliptical form error on rotation accuracy of hydrostatic journal bearings, which solves the Reynolds equation, the flux continuity equation and the kinetic equation. The determination of form error parameters of shaft and bearing bush can be yielded from finding results of this study for precision design of hydrostatic journal bearings.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 July 2018

Yikang Du, Kuanmin Mao, Hongqi Liu, Xiaobo Mao and Zhihang Li

This paper aims to present a simplified method to predict the pressure of the recess, no matter whether the tilt center coincides with the geometric center of the hydrostatic…

Abstract

Purpose

This paper aims to present a simplified method to predict the pressure of the recess, no matter whether the tilt center coincides with the geometric center of the hydrostatic journal bearings.

Design/methodology/approach

To validate the effectiveness of the presented model, computational fluid dynamics (CFD) method and experimental method are performed in this study.

Findings

By comparing the CFD results and the experimental results, the pressure of the recess is related to the tilt direction, the tilt center, the width of the land and the circumferential angle of the land.

Originality/value

The mathematic model requires equivalent resistance of land edge – tilt position, tilt direction, tilt angle and the thickness of oil film instead of any digital iteration. Furthermore, a novel experimental apparatus including a circular hydrostatic bearing called ball bearing is designed to study the tilt effect produced by manufacturing error and offset load force on the pressure of the recess.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Xiaodong Yu, Guangqiang Shi, Hui Jiang, Ruichun Dai, Wentao Jia, Xinyi Yang and Weicheng Gao

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as…

Abstract

Purpose

This paper aims to study the influence of cylindrical texture parameters on the lubrication performance of static and dynamic pressure thrust bearings (hereinafter referred to as thrust bearings) and to optimize their lubrication performance using multiobjective optimization.

Design/methodology/approach

The influence of texture parameters on the lubrication performance of thrust bearings was studied based on the modified Reynolds equation. The objective functions are predicted through the BP neural network, and the texture parameters were optimized using the improved multiobjective ant lion algorithm (MOALA).

Findings

Compared with smooth surface, the introduction of texture can improve the lubrication properties. Under the optimization of the improved algorithm, when the texture diameter, depth, spacing and number are approximately 0.2 mm, 0.5 mm, 5 mm and 34, respectively, the loading capacity is increased by around 27.7% and the temperature is reduced by around 1.55°C.

Originality/value

This paper studies the effect of texture parameters on the lubrication properties of thrust bearings based on the modified Reynolds equation and performs multiobjective optimization through an improved MOALA.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 181