Search results
1 – 4 of 4Olasumbo Ayodeji Makinde, Khumbulani Mpofu and Boitumelo Ramatsetse
Reconfigurable vibrating screen (RVS) is an innovative beneficiation machine designed at Tshwane University of Technology, Republic of South Africa (RSA); with adjustable…
Abstract
Purpose
Reconfigurable vibrating screen (RVS) is an innovative beneficiation machine designed at Tshwane University of Technology, Republic of South Africa (RSA); with adjustable screen structure to ensure sorting, sizing and screening of varying mineral particles (sizes and quantities) demanded by the customers in a cost-effective manner through the screen structure geometric transformation. In order to ensure that this machine is optimally maintained and managed when utilized in surface and underground mining industries, there is a need to establish or ascertain the best maintenance practices that would be used in optimally managing the RVS machine using decision making techniques. In view of this, the purpose of this paper is to ascertain the best maintenance practices that would be used to optimally maintain and manage the RVS machine when used in surface and underground mines.
Design/methodology/approach
Decision making techniques such as weighted decision matrix (WDM) and analytical hierarchy process (AHP) were used in this research work to establish the best maintenance practice for optimally maintaining and managing the RVS machine using relevant literature survey on maintenance management systems as well as the different maintenance criteria decision indices obtained from different conventional vibrating screen machine manufacturers and maintenance experts.
Findings
Based on the results obtained from the WDM analysis, it was anticipated that e-maintenance (e-M) system embedded with diagnosing and prognosing algorithms; with a cumulative weight score of 2.37 is the best maintenance practice for managing the RVS machine when used in surface mines, while AHP with deeper decision making analysis anticipated that the robotic-driven maintenance (RM) system with an important decision criteria; safety, and a cumulative hierarchy score of 28.6 percent, supported by e-M management system with a cumulative hierarchy score of 17.6 percent are the best maintenance mix that could be used in optimally maintaining and managing the RVS machine, when used in a craggy and hazardous underground mining environment.
Practical implications
To this effect, it could be anticipated that e-M management system (endowed with the ability to detect fault on the machine, diagnose and prognose the different subsystems of the RVS machine and ascertain the reconfiguration time and process of the RVS machine in recovering production loss during the maintenance of the machine as well as meeting customers demand, etc.) is the best maintenance practice for optimally maintaining the RVS machine when utilized in surface mines while both e-M management system and RM management system (endowed with the ability to carry out automated maintenance tasks achievement under little or no maintenance manager intervention) are also anticipated as the best customized maintenance practices mix that could be used in optimally maintaining the RVS machine, when used in dangerous and hazardous underground mining environment.
Originality/value
This maintenance management system evaluation and selection for optimal RVS machine functionality will serve as a useful information to different mining machines (and other related machines) maintenance managers, in selecting the best maintenance management system for ensuring optimal functionality, reliability and maintainability of machines used in their industries.
Details
Keywords
Vennan Sibanda, Khumbulani Mpofu, John Trimble and Mufaro Kanganga
Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind…
Abstract
Purpose
Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind these machines is the part envelope and the part family of products that they can produce. The purpose of this paper is to propose a new class of RMT known as a reconfigurable guillotine shear and bending press machine (RGS&BPM). A part family of products that this machine can produce is developed using hierarchical clustering methodologies. The development of these part families is guided by the relationship of the parts in the family in terms of complexity and geometry.
Design/methodology/approach
Part families cannot be developed in isolation, but that process has to incorporate the machine modules used in the reconfiguration process for producing the parts. Literature was reviewed, and group technology principles explored, to develop a concept that can be used to develop the part families. Matrices were manipulated to generate part families, and this resulted in the development of a dendrogram of six possible part families. A software with a graphic user interface for manipulation was also developed to help generate part families and machine modules. The developed concept will assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process.
Findings
The developed concepts assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. The development of part families for the RGS&BPM is key to developing the machine work envelope and modules to carry out the work. This work has been presented to demonstrate the importance of machine development in conjunction with a part family of products that the machine will produce. The paper develops an approach to manufacturing where part families of products are developed prior to developing the machine. The families of products are then used to develop modules that enable the manufacture of the parts and subsequently the size of the machine.
Research limitations/implications
The research was limited to the development of part families for a new RGS&BPM, which is still under development.
Practical implications
The study reflects the development of reconfigurable machines as a solution to manufacturing challenges in terms of group technology approaches adopted in the design phase. It also highlights the significance of the concepts in the reconfigurable machine tool design. The part families define the machine work envelop and its reconfiguration capability.
Social implications
The success of the research will usher an alternative to smaller players in sheet metal work. It will contribute to the easy development of the machine that will bridge the high cost of machine tools.
Originality/value
The study contributes to the new approach in sheet metal manufacturing where dedicated machines may be substituted by a highly flexible reconfigurable machine that has a dual operation, making the investment for small to medium enterprises affordable. It also contributes to the body of knowledge in reconfigurable machine development and the framework for such activities, especially in developing countries.
Details
Keywords
Dilip Sembakutti, Aldin Ardian, Mustafa Kumral and Agus Pulung Sasmito
The purpose of this paper is twofold: an approach is proposed to determine the optimum replacement time for shovel teeth; and a risk-quantification approached is developed…
Abstract
Purpose
The purpose of this paper is twofold: an approach is proposed to determine the optimum replacement time for shovel teeth; and a risk-quantification approached is developed to derive a confidence interval for replacement time.
Design/methodology/approach
The risk-quantification approach is based on a combination of Monte Carlo simulation and Markov chain. Monte Carlo simulation whereby the wear of shovel teeth is probabilistically monitored over time is used.
Findings
Results show that a proper replacement strategy has potential to increase operation efficiency and the uncertainties associated with this strategy can be managed.
Research limitations/implications
The failure time distribution of a tooth is assumed to remain “identically distributed and independent.” Planned tooth replacements are always done when the shovel is not in operation (e.g. between a shift change).
Practical implications
The proposed approach can be effectively used to determine a replacement strategy, along with the level of confidence level, for preventive maintenance planning.
Originality/value
The originality of the paper rests on developing a novel approach to monitor wear on mining shovels probabilistically. Uncertainty associated with production targets is quantified.
Details
Keywords
The ATF 10/20 from Electrovert (UK) is a bench‐top wave soldering system, whose competent ‘no frills’ ease of maintenance design combined with sound build quality makes it…
Abstract
The ATF 10/20 from Electrovert (UK) is a bench‐top wave soldering system, whose competent ‘no frills’ ease of maintenance design combined with sound build quality makes it an ideal entry level machine.