Search results

1 – 7 of 7
Article
Publication date: 9 April 2024

Shola Usharani, R. Gayathri, Uday Surya Deveswar Reddy Kovvuri, Maddukuri Nivas, Abdul Quadir Md, Kong Fah Tee and Arun Kumar Sivaraman

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for…

Abstract

Purpose

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for inspectors. Image-based automatic inspection of cracks can be very effective when compared to human eye inspection. With the advancement in deep learning techniques, by utilizing these methods the authors can create automation of work in a particular sector of various industries.

Design/methodology/approach

In this study, an upgraded convolutional neural network-based crack detection method has been proposed. The dataset consists of 3,886 images which include cracked and non-cracked images. Further, these data have been split into training and validation data. To inspect the cracks more accurately, data augmentation was performed on the dataset, and regularization techniques have been utilized to reduce the overfitting problems. In this work, VGG19, Xception and Inception V3, along with Resnet50 V2 CNN architectures to train the data.

Findings

A comparison between the trained models has been performed and from the obtained results, Xception performs better than other algorithms with 99.54% test accuracy. The results show detecting cracked regions and firm non-cracked regions is very efficient by the Xception algorithm.

Originality/value

The proposed method can be way better back to an automatic inspection of cracks in buildings with different design patterns such as decorated historical monuments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Chowdhury Jony Moin, Mohammad Iqbal, A.B.M. Abdul Malek, Mohammad Muhshin Aziz Khan and Rezwanul Haque

This research aims to investigate how manufacturing flexibility can address the challenges of an ever-changing and unpredictable business environment in Bangladesh’s…

38

Abstract

Purpose

This research aims to investigate how manufacturing flexibility can address the challenges of an ever-changing and unpredictable business environment in Bangladesh’s labor-intensive ready-made garment (RMG) industry, which is underserved and situated in a developing country.

Design/methodology/approach

Using Partial Least Square Structural Equation Modeling, this study empirically evaluated the relationships between manufacturing flexibility, environmental uncertainty and firm performance. The analysis utilized 320 survey responses from potential RMG experts, representing 95 organizations.

Findings

The study achieved a decision-making model for implementing manufacturing flexibility in the RMG industry of Bangladesh with acceptable model fit criterion. The research pinpointed that workforce flexibility plays the maximum mediating among different types of manufacturing in coping with demand and supply uncertainty in the RMG sector.

Research limitations/implications

The study made valuable contributions to theoretical and practical knowledge in the context of manufacturing flexibility in Bangladesh’s RMG and other underserved labor-intensive sectors in developing economies. It suggests that managers should shift from defensive and risky business strategies to more aggressive and proactive approaches by utilizing workforce flexibility resources adaptively to enhance manufacturing capabilities and align with dynamic market demand. Additionally, the study offers recommendations for future research to build upon its findings.

Originality/value

This study is unique in its approach because it presents a decision model for implementing manufacturing flexibility in a labor-intensive industry in a developing economy, specifically the RMG industry in Bangladesh, whereas previous research has primarily focused on high-tech industries in developed economies.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 18 April 2024

Prajakta Chandrakant Kandarkar and V. Ravi

Industry 4.0 has put forward a smart perspective on managing supply chain networks and their operations. The current manufacturing system is primarily data-driven. Industries are…

Abstract

Purpose

Industry 4.0 has put forward a smart perspective on managing supply chain networks and their operations. The current manufacturing system is primarily data-driven. Industries are deploying new emerging technologies in their operations to build a competitive edge in the business environment; however, the true potential of smart manufacturing has not yet been fully unveiled. This research aims to extensively analyse emerging technologies and their interconnection with smart manufacturing in developing smarter supply chains.

Design/methodology/approach

This research endeavours to establish a conceptual framework for a smart supply chain. A real case study on a smart factory is conducted to demonstrate the validity of this framework for building smarter supply chains. A comparative analysis is carried out between conventional and smart supply chains to ascertain the advantages of smart supply chains. In addition, a thorough investigation of the several factors needed to transition from smart to smarter supply chains is undertaken.

Findings

The integration of smart technology exemplifies the ability to improve the efficiency of supply chain operations. Research findings indicate that transitioning to a smart factory radically enhances productivity, quality assurance, data privacy and labour efficiency. The outcomes of this research will help academic and industrial sectors critically comprehend technological breakthroughs and their applications in smart supply chains.

Originality/value

This study highlights the implications of incorporating smart technologies into supply chain operations, specifically in smart purchasing, smart factory operations, smart warehousing and smart customer performance. A paradigm transition from conventional, smart to smarter supply chains offers a comprehensive perspective on the evolving dynamics in automation, optimisation and manufacturing technology domains, ultimately leading to the emergence of Industry 5.0.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 13 March 2024

Ziyuan Ma, Huajun Gong and Xinhua Wang

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for…

Abstract

Purpose

The purpose of this paper is to construct an event-triggered finite-time fault-tolerant formation tracking controller, which can achieve a time-varying formation control for multiple unmanned aerial vehicles (UAVs) during actuator failures and external perturbations.

Design/methodology/approach

First, this study developed the formation tracking protocol for each follower using UAV formation members, defining the tracking inaccuracy of the UAV followers’ location. Subsequently, this study designed the multilayer event-triggered controller based on the backstepping method framework within finite time. Then, considering the actuator failures, and added self-adaptive thought for fault-tolerant control within finite time, the event-triggered closed-loop system is subsequently shown to be a finite-time stable system. Furthermore, the Zeno behavior is analyzed to prevent infinite triggering instances within a finite time. Finally, simulations are conducted with external disturbances and actuator failure conditions to demonstrate formation tracking controller performance.

Findings

It achieves improved performance in the presence of external disturbances and system failures. Combining limited-time adaptive control and event triggering improves system stability, increase robustness to disturbances and calculation efficiency. In addition, the designed formation tracking controller can effectively control the time-varying formation of the leader and followers to complete the task, and by adding a fixed-time observer, it can effectively compensate for external disturbances and improve formation control accuracy.

Originality/value

A formation-following controller is designed, which can handle both external disturbances and internal actuator failures during formation flight, and the proposed method can be applied to a variety of formation control scenarios and does not rely on a specific type of UAV or communication network.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 1 April 2024

Ehsan Ahmad

This paper explores the convergence of Education 4.0 and Industry 4.0 and presents a Twin Peaks model for their seamless integration.

70

Abstract

Purpose

This paper explores the convergence of Education 4.0 and Industry 4.0 and presents a Twin Peaks model for their seamless integration.

Design/methodology/approach

A high-level literature review is conducted to identify and discuss the important challenges and opportunities offered by both Education 4.0 and Industry 4.0. A novel Twin Peaks model is devised for the convergence of these domains and to cope with the challenges effectively.

Findings

The proposed Twin Peak model for the convergence of Education 4.0 and Industry 4.0 suggests that the development of these two domains is interdependent. It emphasizes ethical considerations, inclusivity and understanding the concerns of stakeholders from both education and industry. We have also explained how continuous incremental adaptation within the proposed Twin Peaks model might assist in addressing concerns of one sector with the opportunities of the other.

Originality/value

First, Education 4.0 and Industry 4.0 are reviewed in terms of opportunities and challenges they present. Second, a novel Twin Peaks model for the convergence of Education 4.0 and Industry 4.0 is presented. The proposed discovers that the convergence is adaptive, iterative and must be ethically sound while considering the broader societal implications of the digital transformation. Third, this study also acts as a torch-bearer for the necessity for more research of this kind to guarantee that our educational ecosystem is adaptable and capable of producing the skills required for success in the era of IR4.0.

Details

Journal of Innovative Digital Transformation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2976-9051

Keywords

Open Access
Article
Publication date: 28 February 2024

Luke Mizzi, Arrigo Simonetti and Andrea Spaggiari

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved…

Abstract

Purpose

The “chiralisation” of Euclidean polygonal tessellations is a novel, recent method which has been used to design new auxetic metamaterials with complex topologies and improved geometric versatility over traditional chiral honeycombs. This paper aims to design and manufacture chiral honeycombs representative of four distinct classes of 2D Euclidean tessellations with hexagonal rotational symmetry using fused-deposition additive manufacturing and experimentally analysed the mechanical properties and failure modes of these metamaterials.

Design/methodology/approach

Finite Element simulations were also used to study the high-strain compressive performance of these systems under both periodic boundary conditions and realistic, finite conditions. Experimental uniaxial compressive loading tests were applied to additively manufactured prototypes and digital image correlation was used to measure the Poisson’s ratio and analyse the deformation behaviour of these systems.

Findings

The results obtained demonstrate that these systems have the ability to exhibit a wide range of Poisson’s ratios (positive, quasi-zero and negative values) and stiffnesses as well as unusual failure modes characterised by a sequential layer-by-layer collapse of specific, non-adjacent ligaments. These findings provide useful insights on the mechanical properties and deformation behaviours of this new class of metamaterials and indicate that these chiral honeycombs could potentially possess anomalous characteristics which are not commonly found in traditional chiral metamaterials based on regular monohedral tilings.

Originality/value

To the best of the authors’ knowledge, the authors have analysed for the first time the high strain behaviour and failure modes of chiral metamaterials based on Euclidean multi-polygonal tessellations.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 7 of 7