Search results

1 – 10 of 23
Article
Publication date: 9 April 2024

Shola Usharani, R. Gayathri, Uday Surya Deveswar Reddy Kovvuri, Maddukuri Nivas, Abdul Quadir Md, Kong Fah Tee and Arun Kumar Sivaraman

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for…

Abstract

Purpose

Automation of detecting cracked surfaces on buildings or in any industrially manufactured products is emerging nowadays. Detection of the cracked surface is a challenging task for inspectors. Image-based automatic inspection of cracks can be very effective when compared to human eye inspection. With the advancement in deep learning techniques, by utilizing these methods the authors can create automation of work in a particular sector of various industries.

Design/methodology/approach

In this study, an upgraded convolutional neural network-based crack detection method has been proposed. The dataset consists of 3,886 images which include cracked and non-cracked images. Further, these data have been split into training and validation data. To inspect the cracks more accurately, data augmentation was performed on the dataset, and regularization techniques have been utilized to reduce the overfitting problems. In this work, VGG19, Xception and Inception V3, along with Resnet50 V2 CNN architectures to train the data.

Findings

A comparison between the trained models has been performed and from the obtained results, Xception performs better than other algorithms with 99.54% test accuracy. The results show detecting cracked regions and firm non-cracked regions is very efficient by the Xception algorithm.

Originality/value

The proposed method can be way better back to an automatic inspection of cracks in buildings with different design patterns such as decorated historical monuments.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 24 August 2023

Pedro G.S. Contieri, Amauri Hassui, Luis A. Santa-Eulalia, Tiago F.A.C. Sigahi, Izabela Simon Rampasso, Gustavo Hermínio Salati Marcondes de Moraes and Rosley Anholon

The heterogeneous character of Industry 4.0 opens opportunities for studies to understand the difficulties and challenges found in the transformation process of manufacturers…

Abstract

Purpose

The heterogeneous character of Industry 4.0 opens opportunities for studies to understand the difficulties and challenges found in the transformation process of manufacturers. This article aims to present a critical analysis of the modernization process of an Industry 3.0 automated cell into a fully autonomous cell of Industry 4.0. The objective is to elucidate the difficulties found in this transition process and the possible ways to overcome the challenges, focusing on the management perspective.

Design/methodology/approach

For this, the needed steps for the technology transition were defined and the main I4.0 enabling technologies were applied, such as the application of machine learning algorithms to control quality parameters in milling.

Findings

The main challenges found were related to the obsolescence of the equipment present in the cell, challenges in data integration and communication protocols, in addition to the training of people who work actively in the project team. The difficulties faced were discussed based on similar studies in the literature and possible solutions for each challenge.

Originality/value

This understanding of possible barriers in the modernization process, and the step-by-step defined for this transition, can be important references for professionals working in manufacturing industries and researchers who aim to deepen their studies in this important and disruptive stage of world industrialization.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 10 April 2024

Rui Lin, Qiguan Wang, Xin Yang and Jianwen Huo

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This…

Abstract

Purpose

In complex environments, a spherical robot has great application value. When the pendulum spherical robot is stopped or disturbed, there will be a periodic oscillation. This situation will seriously affect the stability of the spherical robot. Therefore, this paper aims to propose a control method based on backstepping and disturbance observers for oscillation suppression.

Design/methodology/approach

This paper analyzes the mechanism of oscillation. The oscillation model of the spherical robot is constructed and the relationship between the oscillation and the internal structure of the sphere is analyzed. Based on the oscillation model, the authors design the oscillation suppression control of the spherical robot using the backstepping method. At the same time, a disturbance observer is added to suppress the disturbance.

Findings

It is found that the control system based on backstepping and disturbance observer is simple and efficient for nonlinear models. Compared with the PID controller commonly used in engineering, this control method has a better control effect.

Practical implications

The proposed method can provide a reliable and effective stability scheme for spherical robots. The problem of instability in real motion is solved.

Originality/value

In this paper, the oscillation model of a spherical robot is innovatively constructed. Second, a new backstepping control method combined with a disturbance observer for the spherical robot is proposed to suppress the oscillation.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 February 2024

Verena Stingl, Lasse Christiansen, Andreas Kornmaaler Hansen, Astrid Heidemann Lassen and Yang Cheng

The introduction of robots as value-adding “workers” on the shop floor triggers complex changes to manufacturing work. Such changes involve highly entangled relationships between…

Abstract

Purpose

The introduction of robots as value-adding “workers” on the shop floor triggers complex changes to manufacturing work. Such changes involve highly entangled relationships between technology, organisation and people. Understanding such entanglements requires a holistic assessment of contemporary robotised manufacturing work, to anticipate the dynamically emerging opportunities and risks of robotised work.

Design/methodology/approach

A systematic literature review of 87 papers was conducted to capture relevant themes of change in robotised manufacturing work. The literature was analysed using a thematic analysis approach, with Checkland’s soft systems thinking as an analytical framework.

Findings

Based on the literature analysis, the authors present a systemic conceptualisation of robotised manufacturing work. Specifically, the conceptualisation highlights four entangled themes of change: work, organisation of labour, workers’ (experiences) and the firm’s environment. Moreover, the authors discuss the complex patterns of interactions between these objects as relationships that defy straightforward cause–effect models.

Practical implications

The findings draw attention to complex interactions between robotisation and manufacturing work. It can, therefore, inform strategic decisions and support projects for robotisation from a holistic perspective.

Originality/value

The authors present a novel approach to studying and designing robotised manufacturing work as a conceptual system. In particular, the paper shifts the focus towards crucial properties of the system, which are subject to complex changes alongside the introduction of robot technology in manufacturing. Soft systems thinking enables new research avenues to explain complex phenomena at the intersection of robotisation and manufacturing work.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 6 September 2023

Shreyanshu Parhi, Shashank Kumar, Kanchan Joshi, Milind Akarte, Rakesh D. Raut and Balkrishna Eknath Narkhede

The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence…

Abstract

Purpose

The advent of Internet of Things, cloud computing and advanced computing has endowed smart manufacturing environments with resilience, reconfigurability and intelligence, resulting in the emergence of novel capabilities. These capabilities have significantly reshaped the manufacturing ecosystem, enabling it to effectively navigate uncertainties. The purpose of this study is to assess the operational transformations resulting from the implementation of smart manufacturing, which distinguish it from conventional systems.

Design/methodology/approach

A list of qualitative and quantitative smart manufacturing performance metrics (SMPMs) are initially suggested and categorized into strategic, tactical and operational levels. The SMPMs resemble the capabilities of smart manufacturing systems to manage disruptions due to uncertainties. Then, industry and academia experts validate the SMPMs through the utilization of the Delphi method, enabling the ranking of the SMPMs.

Findings

The proposition of the SMPMs serves as a metric to assess the digital transformation capabilities of smart manufacturing systems. In addition, the ranking of the proposed SMPMs shows a degree of relevance of the measures in smart manufacturing deployment and managing the disruptions caused due to the COVID-19 pandemic

Research limitations/implications

The findings benefit managers, consultants, policymakers and researchers in making appropriate decisions for deploying and operationalizing smart manufacturing systems by focusing on critical SMPMs.

Originality/value

The research provides a metric to assess the operational transformations during the deployment of smart manufacturing systems. Also, it states the role of the metric in managing the potential disruptions that can alter the performance of the business due to the COVID-19 pandemic.

Details

Journal of Global Operations and Strategic Sourcing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 23 December 2022

Ruchi Mishra, Rajesh Kr Singh and Malin Song

The study aims to identify the central paradoxical tensions existing in developing resilience in organisations. The main thrust of this study is to develop a thorough…

Abstract

Purpose

The study aims to identify the central paradoxical tensions existing in developing resilience in organisations. The main thrust of this study is to develop a thorough understanding of diverse conflicting tensions in building resilience and develop the possible strategies to surmount these tensions.

Design/methodology/approach

Using the case study approach, the study applied theory-elaboration strategy as this study is based on well-established literature from both digitalisation and resilience. The study uses the paradox theory lens in a case study to reconcile both theories with contextual idiosyncrasies.

Findings

The paradox theory lens provides perspectives to understand tensions during resilience development and the role of digital transformation in this process. It assesses the potential solutions for surmounting tensions in resilient operations. The mapping of workable solutions with different paradoxes and propositions has been proposed for future empirical research.

Research limitations/implications

The study suggests that practitioners should not consider resilience and sustainability as mutually exclusive; instead, managers must embrace ongoing tensions to bring solutions to address these two essential organisational priorities.

Originality/value

To the best of the authors' knowledge, this is the first empirical study that applies paradox theory to understand how an organisation can build resilience while confronting several paradoxes. The study findings support that resilience practices can move in tandem with environmental sustainability goals rather than being usually mutually exclusive.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 2 November 2023

Kamran Mahroof, Amizan Omar, Emilia Vann Yaroson, Samaila Ado Tenebe, Nripendra P. Rana, Uthayasankar Sivarajah and Vishanth Weerakkody

The purpose of this study is to evaluate food supply chain stakeholders’ intention to use Industry 5.0 (I5.0) drones for cleaner production in food supply chains.

Abstract

Purpose

The purpose of this study is to evaluate food supply chain stakeholders’ intention to use Industry 5.0 (I5.0) drones for cleaner production in food supply chains.

Design/methodology/approach

The authors used a quantitative research design and collected data using an online survey administered to a sample of 264 food supply chain stakeholders in Nigeria. The partial least square structural equation model was conducted to assess the research’s hypothesised relationships.

Findings

The authors provide empirical evidence to support the contributions of I5.0 drones for cleaner production. The findings showed that food supply chain stakeholders are more concerned with the use of I5.0 drones in specific operations, such as reducing plant diseases, which invariably enhances cleaner production. However, there is less inclination to drone adoption if the aim was pollution reduction, predicting seasonal output and addressing workers’ health and safety challenges. The findings outline the need for awareness to promote the use of drones for addressing workers’ hazard challenges and knowledge transfer on the potentials of I5.0 in emerging economies.

Originality/value

To the best of the authors’ knowledge, this study is the first to address I5.0 drones’ adoption using a sustainability model. The authors contribute to existing literature by extending the sustainability model to identify the contributions of drone use in promoting cleaner production through addressing specific system operations. This study addresses the gap by augmenting a sustainability model, suggesting that technology adoption for sustainability is motivated by curbing challenges categorised as drivers and mediators.

Details

Supply Chain Management: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1359-8546

Keywords

Article
Publication date: 8 March 2024

Peter Madzik, Lukas Falat, Luay Jum’a, Mária Vrábliková and Dominik Zimon

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine…

75

Abstract

Purpose

The set of 2,509 documents related to the human-centric aspect of manufacturing were retrieved from Scopus database and systmatically analyzed. Using an unsupervised machine learning approach based on Latent Dirichlet Allocation we were able to identify latent topics related to human-centric aspect of Industry 5.0.

Design/methodology/approach

This study aims to create a scientific map of the human-centric aspect of manufacturing and thus provide a systematic framework for further research development of Industry 5.0.

Findings

In this study a 140 unique research topics were identified, 19 of which had sufficient research impact and research interest so that we could mark them as the most significant. In addition to the most significant topics, this study contains a detailed analysis of their development and points out their connections.

Originality/value

Industry 5.0 has three pillars – human-centric, sustainable, and resilient. The sustainable and resilient aspect of manufacturing has been the subject of many studies in the past. The human-centric aspect of such a systematic description and deep analysis of latent topics is currently just passing through.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 26 May 2023

Vikrant Sharma and Dheeraj Nimawat

The purpose of this article is to conduct a bibliometric analysis of the cellular manufacturing system (CMS) literature published from 1982–2021 to identify key issues and trends…

Abstract

Purpose

The purpose of this article is to conduct a bibliometric analysis of the cellular manufacturing system (CMS) literature published from 1982–2021 to identify key issues and trends for the future.

Design/methodology/approach

A six-stage methodology is used to conduct a literature review, which includes: (1) article collection; (2) inclusion/exclusion criteria; (3) reviewing the articles; (4) analyzing the articles; (5) framework development; and (6) future research directions. A total of 936 CMS-specific articles are reviewed. This paper made use of three software tools: the R package, VOSviewer and SciMAT.

Findings

According to the findings, the majority of CM researchers focused on cell formation and design. The USA, Iran and India are the top three leading publishers. Additionally, the gap and future direction of CM are discussed.

Originality/value

To the best of the authors' knowledge, the current study is the first attempt to investigate CMS evaluation through bibliometric and thematic analysis and provides a decisional framework as well as steps for CMS adoption. For individuals who are interested in understanding more about CMS and its evolution, this paper offers a starting point.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 4 July 2023

Pratik Maheshwari, Sachin Kamble, Satish Kumar, Amine Belhadi and Shivam Gupta

The digital warehouse management system is an emergence that forms a critical part of the transformation of economic structure in Industry 4.0. In the present business scenario…

1360

Abstract

Purpose

The digital warehouse management system is an emergence that forms a critical part of the transformation of economic structure in Industry 4.0. In the present business scenario, the warehouse management system encounters a messy layout, poor damage control, unsatisfactory order management, lack of visibility and lack of technological interventions. Digital twin (DT) based warehouse system shows the ontology and knowledge graphs for competitive advantage by consolidating and transferring goods directly from an inbound supplier to an outbound customer on short notice and with no or limited storage. There remains a lack of clarity on how the DT can be implemented successfully in warehouse management.

Design/methodology/approach

The current literature remains largely unstructured and scattered due to a lack of a systematic approach to integrating the research implications and analysis. This paper probes the conceptualization of the DT with the help of theoretical analysis using the systematic literature analysis method.

Findings

The study explores essential concepts such as interoperability and integrability in implementing DT. Further, it analyzes the role of a supply chain control tower (SCCT) in modern supply chain management. A research framework is proposed for practitioners and academicians by incorporating the opportunities and challenges associated with DT implementation. The research findings are mainly threefold: Conceptualization of DT, Featuring SCCT and Exploration of cross-computer platform interfaces, scalability and maintenance strategies.

Originality/value

This study is among the first to analyze and review DT applications in warehouse management. Moreover, the study proposes a theoretical toolbox for the practitioners to successfully implement the DT in warehouse DT-based warehouse management system: A theoretical toolbox for future research and applications.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

1 – 10 of 23