Search results

1 – 10 of 102
Article
Publication date: 1 June 2002

Bijan Shirinzadeh

Flexible fixturing is an important aspect of any flexible manufacturing system (FMS) and computer integrated manufacturing (CIM) environment. The production analysis for fixturing…

1438

Abstract

Flexible fixturing is an important aspect of any flexible manufacturing system (FMS) and computer integrated manufacturing (CIM) environment. The production analysis for fixturing within an FMS environment is presented. Various approaches to flexible fixturing are briefly described. The reconfigurable fixturing is one of the most appropriate flexible fixturing techniques for CIM environment. Reconfigurable and/or automated modular fixturing employs a number of fixture modules that are set up, adjusted and changed to form different fixture layout. The requirements for locating and constraining workpieces are presented. In addition, computer‐aided planning and analysis of fixture set up are discussed.

Details

Assembly Automation, vol. 22 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 1995

Bijan Shirinzadeh

Examines research work into the design and development oflow‐to‐medium volume production systems. Outlines the aim todesign a production unit capable of manufacturing a family of…

Abstract

Examines research work into the design and development of low‐to‐medium volume production systems. Outlines the aim to design a production unit capable of manufacturing a family of products, with a minimum amount of manual intervention. Investigates the use of flexible fixturing strategies using sensor‐based assembly techniques, and the concept of using modular fixture kits to locate and constrain the workpiece, including programmable conformable clamps. Looks at various assembly techniques and commercially available systems. Concludes that a number of novel assembly systems have been proposed and developed in the laboratory but that further research is needed to develop more advanced fixture design, task‐planning and analysis systems.

Details

Industrial Robot: An International Journal, vol. 22 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 September 2019

Olayinka Mohammed Olabanji and Khumbulani Mpofu

The purpose of this paper is to determine the suitability of adopting hybridized multicriteria decision-making models as a decision tool in engineering design. This decision tool…

Abstract

Purpose

The purpose of this paper is to determine the suitability of adopting hybridized multicriteria decision-making models as a decision tool in engineering design. This decision tool will assist design engineers and manufacturers to determine a robust design concept before simulation and manufacturing while all the design features and sub features would have been identified during the decision-making process.

Design/methodology/approach

Fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) are hybridized and applied to obtain optimal design of a reconfigurable assembly fixture (RAF) from a set of alternative design concepts. Design features and sub features associated with the RAF are identified and compared using fuzzified pairwise comparison matrices to obtain weights of their relative importance in the optimal design. The FAHP obtained the fuzzy synthetic extent (FSE) values of the design features and sub features. The FSE values are used as weights of the design features and sub features in generating the decision matrix. FTOPSIS and FTOPSIS based on left and right scores were adopted to predict effects of the weights. Results were obtained for normalized and unnormalized weights of the design features and its effects on the relative closeness coefficients of the design alternatives.

Findings

The improved performance of the FTOPSIS based on left and right scores is due to the involvement of the left and right scores of weights of the design features in the computation of distances from positive and negative ideal solutions. Embedding the weights of the design features in the normalized decision matrix before estimating the distances of the design concepts from ideal solutions reduces the dependency of the closeness coefficients on the weights of the design features. This also decreases the difference in the final values of the design concepts. In essence, the weights of the design features have an impact in the closeness coefficient. There is reduction in the closeness coefficients of the design concepts due to normalization of the weights of the design features. However, normalizing the weights of the design features did not affect the variations in the final values of the design concept. As the final value of the design concepts can be influenced by the normalized weights of the design features, it can be implied that normalization of weights of the sub features will also affect the decision matrix. The study has been able to proof that hybridizing FAHP and FTOPSIS can produce effective results for decisions on optimal design by the application of FTOPSIS based on left and right scores rather than the general FTOPSIS.

Originality/value

This research develops a hybridized multicriteria decision-making model for decision-making in engineering design. It presents a detailed extension of hybridized FAHP and FTOPSIS based on left and right scores as a useful tool for considering the relative importance of design features and sub features in optimal design selection.

Article
Publication date: 1 December 2021

Rajesh Pansare, Gunjan Yadav and Madhukar R. Nagare

The purpose of this paper is to conduct a systematic bibliometric analysis of reconfigurable manufacturing system (RMS) articles using VOSviewer to identify their research themes…

Abstract

Purpose

The purpose of this paper is to conduct a systematic bibliometric analysis of reconfigurable manufacturing system (RMS) articles using VOSviewer to identify their research themes and future research trends and investigate their interconnectivity. This paper also aims to identify prominent authors, publishers, organizations, countries and their collaborations in the RMS domain.

Design/methodology/approach

In this study, the Scopus database is used to retrieve 454 RMS articles published between 1988 and 2020. These articles are then investigated using VOSviewer to determine their interconnectedness, clusters and citations, as well as to generate a map based on text data. The network visualization diagrams and clusters obtained for documents, authors, sources, organizations and countries are explored to determine the current state and future trends in RMS research.

Findings

A bibliometric analysis of selected articles is performed, and current research hotspots in this domain are identified. This work also investigates the current status and future research trends in this domain. The work presented also identifies top researchers, journals, countries and documents in RMS.

Practical implications

This paper can provide academics, researchers and practitioners with additional research insights. At the same time, the research trends identified here can help to direct research and benefit researchers.

Originality/value

The study is the first attempt to review selected documents in the RMS domain using bibliometric analysis tools, and it presents a method for collecting articles, organizing them and analyzing the data.

Details

Journal of Manufacturing Technology Management, vol. 33 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 14 June 2021

Vennan Sibanda, Khumbulani Mpofu and John Trimble

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of…

1917

Abstract

Purpose

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM.

Design/methodology/approach

The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability.

Findings

The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach.

Research limitations/implications

The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured.

Practical implications

This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design.

Social implications

The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches.

Originality/value

This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 December 2019

Vennan Sibanda, Khumbulani Mpofu, John Trimble and Mufaro Kanganga

Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind these…

Abstract

Purpose

Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind these machines is the part envelope and the part family of products that they can produce. The purpose of this paper is to propose a new class of RMT known as a reconfigurable guillotine shear and bending press machine (RGS&BPM). A part family of products that this machine can produce is developed using hierarchical clustering methodologies. The development of these part families is guided by the relationship of the parts in the family in terms of complexity and geometry.

Design/methodology/approach

Part families cannot be developed in isolation, but that process has to incorporate the machine modules used in the reconfiguration process for producing the parts. Literature was reviewed, and group technology principles explored, to develop a concept that can be used to develop the part families. Matrices were manipulated to generate part families, and this resulted in the development of a dendrogram of six possible part families. A software with a graphic user interface for manipulation was also developed to help generate part families and machine modules. The developed concept will assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process.

Findings

The developed concepts assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. The development of part families for the RGS&BPM is key to developing the machine work envelope and modules to carry out the work. This work has been presented to demonstrate the importance of machine development in conjunction with a part family of products that the machine will produce. The paper develops an approach to manufacturing where part families of products are developed prior to developing the machine. The families of products are then used to develop modules that enable the manufacture of the parts and subsequently the size of the machine.

Research limitations/implications

The research was limited to the development of part families for a new RGS&BPM, which is still under development.

Practical implications

The study reflects the development of reconfigurable machines as a solution to manufacturing challenges in terms of group technology approaches adopted in the design phase. It also highlights the significance of the concepts in the reconfigurable machine tool design. The part families define the machine work envelop and its reconfiguration capability.

Social implications

The success of the research will usher an alternative to smaller players in sheet metal work. It will contribute to the easy development of the machine that will bridge the high cost of machine tools.

Originality/value

The study contributes to the new approach in sheet metal manufacturing where dedicated machines may be substituted by a highly flexible reconfigurable machine that has a dual operation, making the investment for small to medium enterprises affordable. It also contributes to the body of knowledge in reconfigurable machine development and the framework for such activities, especially in developing countries.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 27 July 2012

Hongjian Yu, Bing Li, Yang Wang and Ying Hu

Reconfigurability of the assembly fixtures, which enables a set of sheet metal automotive parts to be produced on a single production line, is becoming crucial to maintaining…

Abstract

Purpose

Reconfigurability of the assembly fixtures, which enables a set of sheet metal automotive parts to be produced on a single production line, is becoming crucial to maintaining competitiveness in the rapidly changing market. One of the key issues in reconfigurable fixture design is to identify the fixture configuration and make sure there is enough workspace for a family of parts. The purpose of this paper is to address this issue, through the design and analysis of two novel reconfigurable fixturing robots.

Design/methodology/approach

Following an introduction, the application of the reconfigurable fixturing robot addressed in this paper is described; it is characterized by using parallel manipulator as programmable fixture elements. Kinematic design and reconfigurable design of the fixturing robot is presented based on screw theory and modularized design, respectively.

Findings

The proposed reconfigurable fixturing robots can transform their configurations with 4 DoF (degrees‐of‐freedom), and have a continuous workspace for their application.

Originality/value

Reconfigurability of the assembly fixtures is an important issue for automotive manufacturing, due to the highly competitive nature of this industry. The proposed reconfigurable fixturing robots can greatly facilitate the development of new models of vehicles.

Details

Assembly Automation, vol. 32 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 February 2018

Ann-Louise Andersen, Thomas Ditlev Brunoe, Kjeld Nielsen and Mads Bejlegaard

The purpose of this paper is to present a decisions support tool that can be applied in initial stages of design, for evaluating the investment feasibility of changeable and…

Abstract

Purpose

The purpose of this paper is to present a decisions support tool that can be applied in initial stages of design, for evaluating the investment feasibility of changeable and reconfigurable manufacturing design concepts, based on future demand predictions and their uncertainties. A quantitative model is proposed, which evaluates the discounted value of capital and operating costs of changeable manufacturing design concepts, based on essential characteristics regarding their type and extent of changeability.

Design/methodology/approach

Quantitative empirical modeling is applied, where model conceptualization, validation, and implementation are central elements, using two Danish manufacturing companies as cases.

Findings

The applicability of the model is demonstrated in the two case companies, highlighting differences in type, extent, and level of feasible changeability, as a result of differences in product and production characteristics.

Research limitations/implications

Further studies of changeability implementation should be conducted across industrial fields in order to generalize findings.

Practical implications

There is currently limited support for the conceptual design phase of changeable and reconfigurable manufacturing, where critical decisions regarding type, extent, and level of changeability must be made, regardless of high degrees of uncertainty about future demand scenarios.

Originality/value

This paper expands previous research on design for changeability and reconfigurability, by explicitly considering changeability as a capability that can be enabled in various ways for various purposes in different industrial contexts. The proposed model and the case implementations provide important knowledge on the transition toward changeability in industry.

Details

Journal of Manufacturing Technology Management, vol. 29 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 14 June 2013

Luis de Leonardo, Matteo Zoppi, Li Xiong, Dimiter Zlatanov and Rezia M. Molfino

The use of thin sheets with 3D geometries is growing in quantity, due to current progress towards life‐cycle design and sustainable production, and growing in geometrical…

Abstract

Purpose

The use of thin sheets with 3D geometries is growing in quantity, due to current progress towards life‐cycle design and sustainable production, and growing in geometrical complexity, due to aesthetic and quality concerns. The growth in manufacturing equipment flexibility has not kept pace with these trends. The purpose of this paper is to propose a new reconfigurable fixture to shorten this gap.

Design/methodology/approach

The design implements a novel concept of fixturing. Without interrupting the machining process, a swarm of adaptable mobile agents periodically reposition and reconfigure to support the thin‐sheet workpiece near the tool‐point. The technology has been developed by adopting a multi‐disciplinary, life‐cycle approach. Modularity and eco‐sustainability paradigms have informed the design.

Findings

The performance of the physical prototype in an industrial scenario is highly satisfactory. Experiments demonstrate the ability of the system to reconfigure while maintaining machining accuracy in scenarios typical for aircraft part production.

Research limitations/implications

Coordination between the machine‐tool numerical control and the fixture control is not complete and its improvement will make the manufacturing process more robust and autonomous.

Practical implications

The system allows reduction of shop‐floor fixturing inventory. Compared to other reconfigurable fixtures, SwarmItFIX is smarter, more flexible, lighter, and offers shorter reconfiguration times, easier set‐up, and better adaptability to a wider range of workpiece shapes.

Originality/value

This is a breakthrough idea, answering the challenges of hyper‐flexible manufacturing and the proliferation of thin‐sheet use. It is of significant value to mass‐customized industry and of special significance for small‐series production.

Details

Industrial Robot: An International Journal, vol. 40 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 June 2013

Cezary Zieliński, Włodzimierz Kasprzak, Tomasz Kornuta, Wojciech Szynkiewicz, Piotr Trojanek, Michał Walęcki, Tomasz Winiarski and Teresa Zielińska

Machining fixtures must fit exactly the work piece to support it appropriately. Even slight change in the design of the work piece renders the costly fixture useless. Substitution…

Abstract

Purpose

Machining fixtures must fit exactly the work piece to support it appropriately. Even slight change in the design of the work piece renders the costly fixture useless. Substitution of traditional fixtures by a programmable multi‐robot system supporting the work pieces requires a specific control system and a specific programming method enabling its quick reconfiguration. The purpose of this paper is to develop a novel approach to task planning (programming) of the reconfigurable fixture system.

Design/methodology/approach

The multi‐robot control system has been designed following a formal approach based on the definition of the system structure in terms of agents and transition function definition of their behaviour. Thus, a modular system resulted, enabling software parameterisation. This facilitated the introduction of changes brought about by testing different variants of the mechanical structure of the system. A novel approach to task planning (programming) of the reconfigurable fixture system has been developed. Its solution is based on constraint satisfaction problem approach. The planner takes into account physical, geometrical, and time‐related constraints.

Findings

Reconfigurable fixture programming is performed by supplying CAD definition of the work piece. Out of this data the positions of the robots and the locations of the supporting heads are automatically generated. This proved to be an effective programming method. The control system on the basis of the thus obtained plan effectively controls the behaviours of the supporting robots in both drilling and milling operations.

Originality/value

The shop‐floor experiments with the system showed that the work piece is held stiffly enough for both milling and drilling operations performed by the CNC machine. If the number of diverse work piece shapes is large, the reconfigurable fixture is a cost‐effective alternative to the necessary multitude of traditional fixtures. Moreover, the proposed design approach enables the control system to handle a variable number of controlled robots and accommodates possible changes to the hardware of the work piece supporting robots.

Details

Industrial Robot: An International Journal, vol. 40 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 102