Search results

1 – 10 of 25
Article
Publication date: 10 February 2022

Lokesh Gupta and Rakesh Kumar

Natural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold…

Abstract

Purpose

Natural good-quality sources of aggregates are depleting, whereas large amount of reclaimed asphalt pavement (RAP) is produced annually. Safe disposal and use of RAP in the cold in-place recycling (CIR) using foamed bitumen could be sustainable approach where milling and mixing operations are accomplished simultaneously. This will not only help in minimizing contamination (probability) and transportation cost but also reduces the carbon footprints. Therefore, this study aims to investigate the scope of RAP utilization up to 100% and further its effect on the behavior of reclaimed asphalt foamed bituminous mix.

Design/methodology/approach

Reclaimed asphalt foamed bituminous mix (FBM) is still a new technique. The evidence of performance of 100% recycled pavement (CIR) is only anecdotal and lacks in systematic guidelines and literatures. Foam binder coating around the aggregates is also a concern. Therefore, this study is mainly emphasized to investigate the scope of RAP use in the FBM up to 100%. RAP content is varied in each trial, i.e. 70, 85, 100 and 0% (only fresh aggregates), to make the FBM. RAP use and its effect on the behavior of FBM in terms of resilient modulus, variation in resilient modulus with curing, rutting performance and the potential of resistance against the moisture damage are addressed.

Findings

Considering the laboratory studies, it can be accomplished that mechanistic properties and performance of FBM are largely influenced by RAP material and portray less susceptible characteristics against the moisture damage. FBM containing 70% RAP content exhibits maximum resilient modulus. However, use of RAP up to 100% in FBM is satisfying the minimum required specification.

Originality/value

Overall, the study may be helpful to highway professionals and could generate another possible option of 100% RAP replacing fresh aggregates in the flexible pavements.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 August 2019

Abdelrahman Moukhtar Naser, Hamada Abd El - Wahab, Mohamed Abd El Fattah Moustafa El Nady, Abdelzaher E.A. Mostafa, Long Lin and Ahmed Galal Sakr

This paper aims to investigate the best methods of utilisation of reclaimed asphalt pavements (RAP) in Egypt, to determine the effect of using 100% RAP instead of using virgin…

196

Abstract

Purpose

This paper aims to investigate the best methods of utilisation of reclaimed asphalt pavements (RAP) in Egypt, to determine the effect of using 100% RAP instead of using virgin aggregates and asphalt; investigate the effect of thermoplastic elastomer polymer as asphalt modifier; and also improve the mechanical and physical characteristics and consequently improving the quality of asphalt paving, increasing service life of asphalt-paving and reducing costs.

Design/methodology/approach

Nano acrylate terpolymers were prepared with different % (Wt.) of and were characterised by Fourier transforms infrared (FTIR), for molecular weight (Mw), by thermo gravimetric analysis (TGA) and by transmission electron microscopy (TEM). A 4% (Wt.) of the prepared nanoemulsion terpolymer was mixed with virgin asphalt as a polymer modifier, to improve and reuse of the RAP. The modified binder was tested. The tests conducted include penetration, kinematic viscosity, softening point and specific gravity. Application of Marshall mix design types; hot mix asphalt (HMA), warm mix asphalt (WMA) and cold in place recycled (CIR). Four different mix designs used; control mix contained virgin asphalt by HMA, and the other three mix designs were polymermodified asphalt sample by HMA, WMA and CIR.

Findings

The research results showed that using 4 Wt.% of the prepared nanoemulsion terpolymer to produce hot mix asphalt (HMA) and warm mix asphalt (WMA) achieved higher stability compared to the control mix and cold in place recycled (CIR).

Research limitations/implications

This paper discusses the preparation and the characterisation of nanoemulsion and its application in RAPs to enhance and improve the RAP quality.

Practical implications

Nano-acrylate terpolymer can be used as a new polymer to modify asphalt to achieve the required specifications for RAP.

Originality/value

According to the most recent surveys, Europe produced 265 tonnes of asphalt for road applications in 2014, while the amount of available RAP was more than 50 tonnes. The use of RAP in new blended mixes reduces the need of neat asphalt, making RAP recycling economically attractive.

Article
Publication date: 25 November 2020

Okan Sirin, Murat Gunduz and Mohammed E. Shamiyeh

Pavement is one of the main elements of the roads network. It is extremely essential to study and understand the factors affecting its performance and highlight the most important…

Abstract

Purpose

Pavement is one of the main elements of the roads network. It is extremely essential to study and understand the factors affecting its performance and highlight the most important ones for decision-makers and pavement experts to consider during the design, construction and maintenance stages. The purpose of this paper was to identify the factors affecting pavement performance and rank them according to their importance using Analytic Hierarchy Process (AHP) for decision-makers and pavement experts to consider during the design, construction and maintenance stages.

Design/methodology/approach

A survey was developed considering 29 factors found in the literature that affect pavement performance. The survey was sent to pavement professionals in Qatar to rate their perception of factors affecting pavement performance to enhance roads' sustainability. 205 responses were collected and analyzed using AHP.

Findings

The findings indicate that the factor “unconsidered heavy vehicles volume” is the most critical factor that affects pavement performance. The second most critical factor affecting the pavement performance is the “low asphalt content” due to escalating binder aging, reducing fatigue life of the pavement and decreasing the durability of roads. The third and fourth factors are “poor mechanical and thermal properties” and “unexpected high traffic volume,” respectively. These two factors are strongly attached to the first and second factors since the traffic volume affects the pavement performance less but similar to the heavy vehicles and a mix with poor mechanical and thermal properties is related indirectly to the asphalt content in the mix.

Originality/value

The research provides help for decision-makers in the construction industry to improve the performance of pavements using a multi-criteria decision-making tool. This paper's outcome would help the pavement management professionals in the construction industry to improve pavement performance and management, increase the pavement's life cycle and reduce maintenance costs.

Details

Engineering, Construction and Architectural Management, vol. 28 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 18 October 2021

Haitao Zhang, Junfeng Sun and Mingyang Gong

The purpose of this study is to compare and analyze the anti-aging durability of asphalt and asphalt mixture under the conditions of inherent and improved performance. The…

Abstract

Purpose

The purpose of this study is to compare and analyze the anti-aging durability of asphalt and asphalt mixture under the conditions of inherent and improved performance. The research contents include: the mechanical properties (dynamic stability, bending strain, freeze-thaw splitting tensile strength ratio (TSR)) of different modified asphalt mixtures were tested by using the best modified asphalt.

Design/methodology/approach

The anti-aging durability of different modified asphalt was analyzed by using the results of macro tests such as penetration and softening point as evaluation indexes. Meanwhile, the change of the asphalt colloid instability index (Ic) in the aging process was used as the evaluation index to verify the results of the macroscopic test, and the best modified asphalt was obtained. On this basis, the composition of different modified asphalt mixtures was designed by using the best modified asphalt. Meanwhile, water stability was used as evaluation indexes to study the anti-aging durability of different modified asphalt mixtures.

Findings

The results show that styrene-butadiene-styrene (SBS) modified asphalt has better aging resistance. Due to the special storage time, the performance of rubber asphalt is also the best. Meanwhile, in terms of modified asphalt mixture, its high temperature performance and durability of anti-aging is as follows: 4% SBS /16% rubber modified asphalt mixture (IV) > 4% SBS modified asphalt mixture (II) > asphalt mixture (90#) (I) > 16% rubber modified asphalt mixture (III). The low temperature performance and durability of anti-aging is as follows: Ⅱ > IV > Ⅰ > Ⅲ. The water stability performance and durability of anti-aging is as follows: IV > Ⅲ > Ⅱ > Ⅰ.

Originality/value

The research results have important theoretical and guiding significance for exploring the change of intrinsic properties and improved properties of asphalt and asphalt mixture in the aging process and revealing the anti-aging mechanism of different modified asphalt mixtures.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 July 2019

Rok Cajzek and Uroš Klanšek

The purpose of this paper is cost optimization of project schedules under constrained resources and alternative production processes (APPs).

Abstract

Purpose

The purpose of this paper is cost optimization of project schedules under constrained resources and alternative production processes (APPs).

Design/methodology/approach

The model contains a cost objective function, generalized precedence relationship constraints, activity duration and start time constraints, lag/lead time constraints, execution mode (EM) constraints, project duration constraints, working time unit assignment constraints and resource constraints. The mixed-integer nonlinear programming (MINLP) superstructure of discrete solutions covers time–cost–resource options related to various EMs for project activities as well as variants for production process implementation.

Findings

The proposed model provides the exact optimal output data for project management, such as network diagrams, Gantt charts, histograms and S-curves. In contrast to classic scheduling approaches, here the optimal project structure is obtained as a model-endogenous decision. The project planner is thus enabled to achieve optimization of the production process simultaneously with resource-constrained scheduling of activities in discrete time units and at a minimum total cost.

Practical implications

A set of application examples are addressed on an actual construction project to display the advantages of proposed model.

Originality/value

The unique value this paper contributes to the body of knowledge reflects through the proposed MINLP model, which is capable of performing the exact cost optimization of production process (where presence and number of activities including their mutual relations are dealt as feasible alternatives, meaning not as fixed parameters) simultaneously with the associated resource-constrained project scheduling, whereby that is achieved within a uniform procedure.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 11 May 2023

Ganesh Prabhu Ganapathy, Theodore C. Haupt and Pandimani

Cracking, deformation and rutting are the most prevalent types of pavement distress, and these deformations and flow characteristics greatly distress the pavement features while…

49

Abstract

Purpose

Cracking, deformation and rutting are the most prevalent types of pavement distress, and these deformations and flow characteristics greatly distress the pavement features while also limiting its use. In India, on the other hand, more than 300 million scrap tyres are generated each year, and their disposal has become a severe environmental issue. Furthermore, the scrap generated by the used tyre must be disposed of properly. Hence, this study presents the experimental investigations of bitumen incorporating with Crumb rubber as main additive along with SBS polymer, to enhance the engineering property.

Design/methodology/approach

Crumb rubber (CR) was used as an additive along with styrene–butadiene–styrene (SBS) polymer to enrich the engineering qualities of the bitumen to reduce the disposal problem of scrap tyres and reduce the risk of environmental pollution. Because SBS polymer is expensive, response surface methodology modelling's central composite design (CCD) was used to optimise the number of tests. CCD modelling's input factors (process variables) were the inclusion rates of SBS and CR, which ranged from 2% to 5% and 4% to 10%, respectively, by total weight. Furthermore, the influence of SBS polymer and CR on the characteristics of modified bitumen was prioritised.

Findings

The addition of SBS and CR enhanced the bitumen's penetration resistance at service temperatures. Furthermore, increasing the SBS and CR concentration affected the flow characteristics of the modified bitumen and enhanced its viscosity. The addition of SBS and CR as bitumen modifiers increased penetration resistance by 24.06%. The Dynamic Shear Rheometer test demonstrated that the complex modulus of virgin bitumen increases with increasing SBS and CR content, which is consistent with the shifting softening point trend. The dosing rate of up to 3.5% SBS and 11% CR considerably contributed to the creation of polymer link networks, which increased the complex modulus of the bitumen by 16.5%. The CCD model's analysis of variance and Pareto bar chart demonstrated that the dose of CR is significant in improving the engineering features of the virgin bitumen rather than the SBS.

Originality/value

The utilisation of CR as a bitumen modifier may solve the problem of waste tyre disposal while also lowering the risk of environmental damage. Furthermore, because the presence of CR increased the engineering properties, particularly the complex modulus of virgin bitumen, the use of CR in combination with SBS polymer can be an efficient and cost-effective strategy to improving bitumen qualities.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 December 2023

Cláudia Rafaela Saraiva de Melo Simões Nascimento, Adiel Teixeira de Almeida-Filho and Rachel Perez Palha

This paper proposes selecting a construction project portfolio in the context of a public institution, which makes it possible to assess quantitative and qualitative criteria…

Abstract

Purpose

This paper proposes selecting a construction project portfolio in the context of a public institution, which makes it possible to assess quantitative and qualitative criteria, thereby meeting the needs of the institution and the existing constraints.

Design/methodology/approach

The research design follows a framework using technique for order preference by similarity to ideal solution (TOPSIS) associated with integer linear programming.

Findings

The method involves a flow of assessments allowing criteria and weights to be elicited where outcomes are based on the experts' intra-criteria assessment of alternatives and decision-makers' inter-criteria assessment. This is of utmost interest to public organizations, where selections must result in benefits and lower costs, integrating the experts' technical and management perspectives.

Social implications

Public institutions are characterized by having limited financial and personnel resources for project development despite having a high demand for requests not associated with profits, making it essential to have a framework that enables using multiple criteria to better evaluate the benefits related to these decisions.

Originality/value

The main contributions of this article are: (1) the proposition of a framework for selecting construction project portfolios considering the organization's strategic needs; (2) identifying quantitative and qualitative assessment criteria for project selection; (3) integrating TOPSIS with an optimization process for selecting the construction project portfolios and (4) providing a structured decision process for selecting the portfolio that best represents the interests of the institution within its limited resources and personnel.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 7 April 2022

Haopeng Lou, Zhibin Xiao, Yinyuan Wan, Fengling Jin, Boqing Gao and Chao Li

In this article, a practical design methodology is proposed for discrete sizing optimization of high-rise concrete buildings with a focus on large-scale and real-life structures.

Abstract

Purpose

In this article, a practical design methodology is proposed for discrete sizing optimization of high-rise concrete buildings with a focus on large-scale and real-life structures.

Design/methodology/approach

This framework relies on a computationally efficient approximation of the constraint and objective functions using a radial basis function model with a linear tail, also called the combined response surface methodology (RSM) in this article. Considering both the code-stipulated constraints and other construction requirements, three sub-optimization problems were constructed based on the relaxation model of the original problem, and then the structural weight could be automatically minimized under multiple constraints and loading scenarios. After modulization, the obtained results could meet the discretization requirements. By integrating the commercially available ETABS, a dedicated optimization software program with an independent interface was developed and details for practical software development were also presented in this paper.

Findings

The proposed framework was used to optimize different high-rise concrete buildings, and case studies showed that material usage could be saved by up to 12.8% compared to the conventional design, and the over-limit constraints could be adjusted, which proved the feasibility and effectiveness.

Originality/value

This methodology can therefore be applied by engineers to explore the optimal distribution of dimensions for high-rise buildings and to reduce material usage for a more sustainable design.

Article
Publication date: 28 November 2023

Salman Shooshtarian, Tayyab Maqsood, Peter S.P. Wong, Savindi Caldera, Tim Ryley, Atiq Zaman and Ana María Cáceres Ruiz

The utilisation of products with recycled content (PwRC) in construction projects has been identified as a targeted way to achieve sustainable management of construction and…

Abstract

Purpose

The utilisation of products with recycled content (PwRC) in construction projects has been identified as a targeted way to achieve sustainable management of construction and demolition waste resources. However, sustainable applications of these resources are subject to a wide array of factors that demand a thorough investigation. This study, therefore, explores the motivations, barriers and strategies for optimal PwRC uptake using a multiple-case study approach.

Design/methodology/approach

This study adopted an interpretive multiple-case study approach. The case studies were selected from recently completed construction projects including two infrastructure projects, one commercial project and one residential project. A series of semi-structured interviews were carried out to collect the data. For each case study, four participants were interviewed; these participants represented design, client, supply and building teams.

Findings

The study revealed the main barriers, motivations and opportunities for adoption of PwRC resources in four construction projects. These factors are believed to influence the utilisation of PwRC to varying extents and/or in diverse ways. The findings also suggest that there is a significant opportunity for stakeholders to adopt more sustainable waste management practices, and the use of institutional drivers can help achieve this goal.

Research limitations/implications

The primary research contribution of the study lies in proposing three key research directions: investigating regulatory constraints impacting the use of PwRC, addressing supply chain challenges and enhancing quality assurance.

Originality/value

The research has a practical contribution to the industry through a suite of actionable strategies to increase the uptake of PwRC. The strategies are mostly focussed on stakeholders' education, the regulation that supports PwRC and project management planning. The two major motivations – referring to two of the three pillars of sustainability (economy and environment) – provide a basis for organisational changes to ensure achieving sustainability in construction activities.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Abstract

Details

Transport Science and Technology
Type: Book
ISBN: 978-0-08-044707-0

1 – 10 of 25