Search results

1 – 10 of over 4000
Article
Publication date: 1 June 2007

Mark Lindquist

This paper examines the impact of a citizen initiated public participation process on preparers and presenters of digital visualizations for spatial design decision making…

Abstract

This paper examines the impact of a citizen initiated public participation process on preparers and presenters of digital visualizations for spatial design decision making. Visualization for public participation enables communication between professionals and laypeople to occur with far greater success than through conventional methods. Further, visualization utilizing real-time immersive technology allows for far more effective communication of the spatial impact of design proposals than conventional media offer, facilitating negotiation and interaction with space by providing the means to virtually walk around a digital model. In addition, the effectiveness of real-time immersive visualization in bridging the public-professional communication gap can empower the public, offering the opportunity to confront professionals and to force engagement in a process of public participation on the public's terms.

Through discussion of a case study from the University of Toronto's Centre for Landscape Research (CLR), this paper examines the impact on the visualization process when the public are able to invert the conventional model of public participation by initiating the dialogue with professionals. This paper argues that a citizen initiated public participation process increases the necessity for a sound methodology and code of ethics of visualization for public participation. When the public are able to utilize technology to invert the conventional public-professional role, issues of validity, reliability and ethics are placed at the forefront of the discussion greatly increasing the scrutiny placed on both the technology and those preparing and presenting the visualization.

Details

Open House International, vol. 32 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

Open Access
Article
Publication date: 25 September 2018

Ruwini Edirisinghe

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of…

23287

Abstract

Purpose

The future construction site will be pervasive, context aware and embedded with intelligence. The purpose of this paper is to explore and define the concept of the digital skin of the future smart construction site.

Design/methodology/approach

The paper provides a systematic and hierarchical classification of 114 articles from both industry and academia on the digital skin concept and evaluates them. The hierarchical classification is based on application areas relevant to construction, such as augmented reality, building information model-based visualisation, labour tracking, supply chain tracking, safety management, mobile equipment tracking and schedule and progress monitoring. Evaluations of the research papers were conducted based on three pillars: validation of technological feasibility, onsite application and user acceptance testing.

Findings

Technologies learned about in the literature review enabled the envisaging of the pervasive construction site of the future. The paper presents scenarios for the future context-aware construction site, including the construction worker, construction procurement management and future real-time safety management systems.

Originality/value

Based on the gaps identified by the review in the body of knowledge and on a broader analysis of technology diffusion, the paper highlights the research challenges to be overcome in the advent of digital skin. The paper recommends that researchers follow a coherent process for smart technology design, development and implementation in order to achieve this vision for the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 10 August 2021

Silvia Sagita Arumsari and Ammar Aamer

While several warehouses are now technologically equipped and smart, the implementation of real-time analytics in warehouse operations is scarcely reported in the literature. This…

Abstract

Purpose

While several warehouses are now technologically equipped and smart, the implementation of real-time analytics in warehouse operations is scarcely reported in the literature. This study aims to develop a practical system for real-time analytics of process monitoring in an internet-of-things (IoT)-enabled smart warehouse environment.

Design/methodology/approach

A modified system development research process was used to carry out this research. A prototype system was developed that mimicked a case company’s actual warehouse operations in Indonesia’s manufacturing companies. The proposed system relied heavily on the utilization of IoT technologies, wireless internet connection and web services to keep track of the product movement to provide real-time access to critical warehousing activities, helping make better, faster and more informed decisions.

Findings

The proposed system in the presented case company increased real-time warehousing processes visibility for stakeholders at different management levels in their most convenient ways by developing visual representation to display crucial information. The numerical or textual data were converted into graphics for ease of understanding for stakeholders, including field operators. The key elements for the feasible implementation of the proposed model in an industrial area were discussed. They are strategic-level components, IoT-enabled warehouse environments, customized middleware settings, real-time processing software and visual dashboard configuration.

Research limitations/implications

While this study shows a prototype-based implementation of actual warehouse operations in one of Indonesia’s manufacturing companies, the architectural requirements are applicable and extensible by other companies. In this sense, the research offers significant economic advantages by using customized middleware to avoid unnecessary waste brought by the off-the-shelves generic middleware, which is not entirely suitable for system development.

Originality/value

This research’s finding contributes to filling the gap in the limited body of knowledge of real-time analytics implementation in warehousing operations. This should encourage other researchers to enhance and develop the devised elements to enrich smart warehousing’s theoretical knowledge. Besides, the successful proof-of-concept implementation reported in this research would allow other companies to gain valuable insights and experiences.

Details

Journal of Science and Technology Policy Management, vol. 13 no. 2
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 12 October 2022

Emmanuel Joy, Aadhithian R. and Christhu Raja

The purpose of this paper is to present the investigation on contemporary applications of game design in architectural visualization, urban environmental planning and the results…

Abstract

Purpose

The purpose of this paper is to present the investigation on contemporary applications of game design in architectural visualization, urban environmental planning and the results to address the problems of traditional methods specifically in terms of interactivity and visualization. The authors present the prototype that incorporates information modeling and virtual reality (VR) into interactive architectural visualization.

Design/methodology/approach

The proposed system supports a virtual walkthrough process that allows users to navigate in an architectural space of their imagination and design. The immersion in the design of living space or environment has been made possible through the inclusion of VR through the use of WebVR technology to deploy the design to be experienced.

Findings

This study investigates and establishes a framework that explores the intricacies of 3 imensional (3D) Architectural Visualization in a real-time engine by designing a visual experience with a better level of user interaction and then deploying it through VR.

Originality/value

To the best of the authors’ knowledge, this is one of the few experimental frameworks which perfectly integrates VR for visualization in digital home design environments. The prospective applications of this framework are in several fields of construction innovation, architectural design, 3D modeling, virtual and augmented reality.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 1 June 2007

Ming Tang and Dihua Yang

Having been a promising visualization tool since 1950s, ironically, virtual reality is not widely used in the architectural design and evaluation process due to several…

Abstract

Having been a promising visualization tool since 1950s, ironically, virtual reality is not widely used in the architectural design and evaluation process due to several constrains, such as the high cost of equipments and advanced programming skills required. This paper described the collaboration between design computing courses and architecture design studios that have been taught at Savannah College of Art and Design (SCAD) in 2004 and 2005. These courses explored several practical methods to integrate Low Cost Virtual Reality Aided Design (LC-VRAD) in the architectural design process. As a summary of the collaboration, this paper refers to three main aspects: (1) How to use game engine to design an affordable VR system in the ordinary studio environment. (2) How to integrate VR, into the design process, not only as a visualization tool, but also as a design instrument. (3) How to evaluate different methods of representing architectural models based on the efficiency of workflow, rendering quality and users' feedback.

Support by the Game and Interactive Design Department at SCAD, students in the School of Building Arts implemented two Low Cost VRAD methods in various design phases, starting from site analysis, schematic design, design development to the final presentation. Two popular game engines, Epic Game's Unreal engine and Director MX's Shockwave engine, were introduced to students to visualize their project in real-time. We discussed computer-aided design theories including the application of VR, as well as digital computing and human computer interaction. At the end of each quarter, feedbacks from students and faculties were collected and analyzed. These methods were revised and improved consistently across 2004 and 2005 academic year.

Details

Open House International, vol. 32 no. 2
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 2 March 2021

Zeynep Birgonul

The heating, ventilation and air conditioning systems are responsible for a significant proportion of the energy consumption of the built environment, on which the occupant's…

Abstract

Purpose

The heating, ventilation and air conditioning systems are responsible for a significant proportion of the energy consumption of the built environment, on which the occupant's pursuit of thermal comfort has a substantial impact. Regarding this concern, current software can assess and visualize the conditions. However; integration of existing technologies and real-time information could enhance the potential of the solution proposals. Therefore, the purpose of this research is to explore new possibilities of how to upgrade building information modeling (BIM) technology to be interactive; by using existing BIM data during the occupation phase. Moreover, the research discusses the potential of enhancing energy efficiency and comfort maximization together by using the existing BIM database and real-time information concomitantly.

Design/methodology/approach

The platform is developed by designing and testing via prototyping method thanks to Internet of things technologies. The algorithm of the prototype uses real-time indoor thermal information and real-time weather information together with user's body temperature. Moreover, the platform processes the thermal values with specific material information from the existing BIM file. The final prototype is tested by a case study model.

Findings

The outcome of the study, “Symbiotic Data Platform” is an occupant-operated tool, that has a hardware, software and unique Revit-Dynamo definition that implies to all BIM files.

Originality/value

The paper explains the development of “Symbiotic Data Platform”, which presents an interactive phase for BIM, as creating a possibility to use the existing BIM database and real-time values during the occupation phase, which is operated by the occupants of the building; without requiring any prior knowledge upon any of the BIM software or IoT technology.

Article
Publication date: 9 July 2021

Anish Banerjee and R. Ramesh Nayaka

The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation…

Abstract

Purpose

The purpose of this paper is to investigate building information modelling (BIM) integrated Internet of Things (IoT) architectures extensively and provide comparative evaluation of those against deciding parameters pertaining to their characteristics and subsequent applications in construction industry.

Design/methodology/approach

This paper identifies BIM-integrated cyber physical system frameworks, specific to project objectives, comprising of sensors working as physical assets and BIM-based virtual models acting as the cyber component , connected via wired or wireless protocols (e.g. WiFi, Zigbee, near-field communication, mobile-to-mobile, Zwave, 3 G, 4 G, long-term evolution, 5 G and low-power wide-area networks) and their potential applications in decision-making, visual management, logistics and supply chain management, smart building system management and structural performance assessment, etc. Such proposed architectures are evaluated against deciding parameters such as availability, reliability, mobility, performance, management, scalability, interoperability and security and privacy to evaluate their respective efficiencies.

Findings

This study finds that the underlying aim of planned IoT frameworks is to integrate systems and processes for a better information flow and to initiate shift from silo solutions to a smart ecosystem. The efficiencies of such frameworks are completely subjective to their respective project natures, objectives and requirements.

Originality/value

This study is unique in its nature to identify requirements of an efficient BIM-integrated IoT architecture and provide comprehensive insights about potential applications in construction industry.

Article
Publication date: 5 July 2021

Seyedeh Neda Naghshbandi, Liz Varga and Yukun Hu

The development of communication and artificial intelligence technologies has raised interest in connectivity and increased autonomy of automated earthmoving equipment for…

Abstract

Purpose

The development of communication and artificial intelligence technologies has raised interest in connectivity and increased autonomy of automated earthmoving equipment for earthwork. These changes are motivating work to reduce uncertainties, in terms of improving equipment object detection capability and reducing strikes and accidents on site. The purpose of this study is to illustrate industrial drivers for automated earthwork systems; identify the specific capabilities which make the transformation happen; and finally determine use cases that create value for the system. These three objectives act as components of a technology roadmap for automated and connected earthwork and can guide development of new products and services.

Design/methodology/approach

This paper used a text mining approach in which the required data was captured through a structured literature review, and then expert knowledge was used for verification of the results.

Findings

Automated and connected earthwork can enhance construction site and its embraced infrastructure, resilience by avoiding human faults during operations. Automating the monitoring process can lead to reliable anticipation of problems and facilitate real-time responses to unexpected situation via connectedness capabilities. Research findings are presented in three sections: industrial perspectives, trends and drivers for automated and connected earthwork; capabilities which are met by technologies; and use cases to demonstrate different capabilities.

Originality/value

This study combines the results of disintegrated and fragmented research in the area of automated and connected earthwork and categorises them under new capability levels. The identified capabilities are classified in three main categories including reliable environmental perception, single equipment decision-making toward safe outcomes and fleet-level safety enhancement. Finally, four different levels of automation are proposed for earthwork technology roadmap.

Details

Construction Innovation , vol. 22 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 March 2023

Esra Dobrucali, Emel Sadikoglu, Sevilay Demirkesen, Chengyi Zhang, Algan Tezel and Isik Ates Kiral

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and…

Abstract

Purpose

Construction is a risky industry. Therefore, organizations are seeking ways towards improving their safety performance. Among these, the integration of technology into health and safety leads to enhanced safety performance. Considering the benefits observed in using technology in safety, this study aims to explore digital technologies' use and potential benefits in construction health and safety.

Design/methodology/approach

An extensive bibliometrics analysis was conducted to reveal which technologies are at the forefront of others and how these technologies are used in safety operations. The study used two different databases, Web of Science (WoS) and Scopus, to scan the literature in a systemic way.

Findings

The systemic analysis of several studies showed that the digital technologies use in construction are still a niche theme and need more assessment. The study provided that sensors and wireless technology are of utmost importance in terms of construction safety. Moreover, the study revealed that artificial intelligence, machine learning, building information modeling (BIM), sensors and wireless technologies are trending technologies compared to unmanned aerial vehicles, serious games and the Internet of things. On the other hand, the study provided that the technologies are even more effective with integrated use like in the case of BIM and sensors or unmanned aerial vehicles. It was observed that the use of these technologies varies with respect to studies conducted in different countries. The study further revealed that the studies conducted on this topic are mostly published in some selected journals and international collaboration efforts in terms of researching the topic have been observed.

Originality/value

This study provides an extensive analysis of WoS and Scopus databases and an in-depth review of the use of digital technologies in construction safety. The review consists of the most recent studies showing the benefits of using such technologies and showing the usage on a systemic level from which both scientists and practitioners can benefit to devise new strategies in technology usage.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 June 2023

Ebru Altan and Zeynep Işık

Increasing complexity in construction projects evokes interest in application of innovative digital technologies in construction. Digital twins (DT), which bring these innovative…

Abstract

Purpose

Increasing complexity in construction projects evokes interest in application of innovative digital technologies in construction. Digital twins (DT), which bring these innovative technologies together, have strong interactions with lean construction (LC). To highlight the collaborative nature of DT and LC, the paper explores the interactions between LC and DT and assesses benefits, costs, opportunities and risks (BOCR) of DT in LC to analyze significant obstacles and enablers in DT adoption in LC.

Design/methodology/approach

BOCR approach comprehensively considers both the positive and the negative attributes of a problem. At the first step, BOCR criteria for DT are identified through literature review and expert opinions, at the second step dependencies among BOCR criteria for DT in LC are determined by neutrosophic analytic hierarchy process (AHP), through a questionnaire survey. Integrating BOCR into neutrosophic AHP enables achieving more meaningful preference scores.

Findings

Cost of skilled workforce is the most important factor and opportunity to reduce waste is the second most important factor in adoption of DT in LC. The results were analyzed to rank the BOCR of adoption of DT in LC.

Originality/value

This study, in a novel way, performs BOCR analysis through neutrosophic AHP to reflect experts' judgments more effectively by neutrosophic AHP's better handling of vagueness and uncertainty. The paper provides a model to better understand the significant factors that influence adoption of DT in LC.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of over 4000