Search results

1 – 10 of 337
Article
Publication date: 16 March 2015

Yingping Hong, Ting Liang, Pinggang Jia, Wenyi Liu, Qiulin Tan, Chen Li, Tingli Zheng, Binger Ge and Jijun Xiong

Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper…

Abstract

Purpose

Physical contact and traditional sensitive structure Physical contact and traditional pressure-sensitive structures typically do not operate well in harsh environments. This paper proposes a high-temperature pressure measurement system for wireless passive pressure sensors on the basis of inductively coupled LC resonant circuits.

Design/methodology/approach

This paper begins with a general introduction to the high-temperature pressure measurement system, which consists of a reader antenna inductively coupled to the sensor circuit, a readout unit and a heat insulation unit. The design and fabrication of the proposed measurement system are then described in detail.

Findings

A wireless passive pressure sensor without an air channel is fabricated using high-temperature co-fired ceramics (HTCC) technology and its signal is measured by the designed measurement system. The designed heat insulation unit keeps the reader antenna in a safe environment of 159.5°C when the passive sensor is located in a 900°C high-temperature zone continuously for 0.5 h. The proposed system can effectively detect the sensor’s resonance frequency variation in a high bandwidth from 1 to 100 MHz with a frequency resolution of 0.006 MHz, tested from room temperature to 500°C for 30 min.

Originality/value

Expensive and bulky equipment (impedance analyzers or network analyzers) restrict the use of the readout method outside the laboratory environment. This paper shows that a novel readout circuit can replace the laboratory equipment to demodulate the measured pressure by extracting the various sensors’ resonant frequency. The proposed measurement system realizes automatic and continuous pressure monitoring in a high-temperature environment with a coupled distance of 2.5 cm. The research finding is meaningful for the measurement of passive pressure sensors under a wide temperature range.

Article
Publication date: 1 January 1989

M.K. Robinson, N.M. Shorrocks, R.W. Bicknell, P. Watson and D.J. Pedder

A new lass of sensors for thermal imaging and detection in the infra‐red band is emerging which exploits the pyroelectric effect in ferroelectric materials. These sensors, which…

Abstract

A new lass of sensors for thermal imaging and detection in the infra‐red band is emerging which exploits the pyroelectric effect in ferroelectric materials. These sensors, which are fabricated in the form of large linear or two‐dimensional arrays of detectors interfaced to a silicon readout circuit, do not require cooling for their operation, in contrast to the photon detection based thermal imagers. They thus have the potential for low cost thermal detection and imaging. This paper examines the design of these arrays and the technologies employed in their fabrication, with particular attention to their specialised packaging requirements, by reference to a range of linear and two‐dimensional pyroelectric array devices that have been fabricated in this laboratory.

Details

Microelectronics International, vol. 6 no. 1
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 15 July 2021

Mehdi Habibi, Yunus Dawji, Ebrahim Ghafar-Zadeh and Sebastian Magierowski

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling…

Abstract

Purpose

Nanopore-based molecular sensing and measurement, specifically DNA sequencing, is advancing at a fast pace. Some embodiments have matured from coarse particle counters to enabling full human genome assembly. This evolution has been powered not only by improvements in the sensors themselves, but also in the assisting microelectronic CMOS readout circuitry closely interfaced to them. In this light, this paper aims to review established and emerging nanopore-based sensing modalities considered for DNA sequencing and CMOS microelectronic methods currently being used.

Design/methodology/approach

Readout and amplifier circuits, which are potentially appropriate for conditioning and conversion of nanopore signals for downstream processing, are studied. Furthermore, arrayed CMOS readout implementations are focused on and the relevant status of the nanopore sensor technology is reviewed as well.

Findings

Ion channel nanopore devices have unique properties compared with other electrochemical cells. Currently biological nanopores are the only variants reported which can be used for actual DNA sequencing. The translocation rate of DNA through such pores, the current range at which these cells operate on and the cell capacitance effect, all impose the necessity of using low-noise circuits in the process of signal detection. The requirement of using in-pixel low-noise circuits in turn tends to impose challenges in the implementation of large size arrays.

Originality/value

The study presents an overview on the readout circuits used for signal acquisition in electrochemical cell arrays and investigates the specific requirements necessary for implementation of nanopore-type electrochemical cell amplifiers and their associated readout electronics.

Article
Publication date: 14 January 2014

Shijun Zheng, Ting Liang, Yinpin Hong, Ying Li and Jijun Xiong

The paper aims to highlight a wireless pressure-sensitive micro-device with high pressure sensitivity and accuracy. It is based on the partially stabilized Zirconia (PSZ) ceramic…

Abstract

Purpose

The paper aims to highlight a wireless pressure-sensitive micro-device with high pressure sensitivity and accuracy. It is based on the partially stabilized Zirconia (PSZ) ceramic material which is capable of excellent elasticity and robustness.

Design/methodology/approach

The paper begins with a general introduction to the wireless interrogating method and then the fabrication processes of the device using high temperature co-fired ceramic (HTCC) technology are described in detail.

Findings

A passive wireless micro-device made from a novel material-PSZ ceramic on pressure monitoring is fabricated and tested and the authors proved that the device possesses an advantages over some proposed wireless sensors on interrogating distance. The pressure sensitivity of the device is 336 kHz/bar at readout distance 2.5 cm and that is an excellent property.

Originality/value

The paper shows a new design scheme for wireless pressure measurement. The future application of the wireless device indicates the problem on external packaging and wire connection could be avoided. The allowable interrogation distance between the device and readout circuit reaches 2.5 cm which is mentioned for the first time so far. The distance is long enough to insert a thermal insulation material which can protect the vulnerable readout circuit from harsh environment, so the research finding is meaningful for the modern measurement technology.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 9 March 2010

K. Shen, A.W. Ruan and B. Hu

There are a lot of applications available for infrared focal plane array (IRFPA). Thus, advanced functions are required to support a wide range of IRFPAs applications. The purpose…

Abstract

Purpose

There are a lot of applications available for infrared focal plane array (IRFPA). Thus, advanced functions are required to support a wide range of IRFPAs applications. The purpose of this paper is to present a control circuit for a user reconfigurable 320×256 readout integrated circuit (ROIC) designed for IRFPA applications.

Design/methodology/approach

In order to implement reconfigurable ROIC, several advanced functions can be realized by the control circuit such as global reset, capacitive transimpedance amplifier (CTIA) gain selectable, CTIA bandwidth selectable, random access opening (RAO), dynamic image transposition, selectable outputs, and adjustable power dissipation. These advanced functions can be implemented by loading corresponding control words into a 60‐bit control register. There are seven types of control words available with 14‐bit control words reserved for the realization of other functions in the future to control corresponding seven advanced functions.

Findings

Design and simulation of the control circuit based on CSMC 0.5 μm process technology have been conducted to confirm these functions. Based on these functions, wide scene dynamic range can be achieved, and the application of ROIC is more flexible.

Originality/value

This paper describes more functions such as CTIA bandwidth selectable, global reset, and also improved functions of RAO.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 September 2020

Qin Li, Huifeng Zhu, Guyue Huang, Zijie Yu, Fei Qiao, Qi Wei, Xinjun Liu and Huazhong Yang

The smart image sensor (SIS) which integrated with both sensor and smart processor has been widely applied in vision-based intelligent perception. In these applications, the…

Abstract

Purpose

The smart image sensor (SIS) which integrated with both sensor and smart processor has been widely applied in vision-based intelligent perception. In these applications, the linearity of the image sensor is crucial for better processing performance. However, the simple source-follower based readout circuit in the conventional SIS introduces significant nonlinearity. This paper aims to design a low-power in-pixel buffer circuit applied in the high-linearity SIS for the smart perception applications.

Design/methodology/approach

The linearity of the SIS is improved by eliminating the non-ideal effects of transistors and cancelling dynamic threshold voltage that changes with the process variation, voltage and temperature. A low parasitic capacitance low leakage switch is proposed to further improve the linearity of the buffer. Moreover, an area-efficient SIS architecture with a sharing mechanism is presented to further reduce the number of in-pixel transistors.

Findings

A low parasitic capacitance low leakage switch and a gate-source voltage pre-storage method are proposed to further improve the linearity of the buffer. Nonlinear effects introduced by parasitic capacitance switching leakage, etc., have been investigated and solved by proposing low-parasitic and low-leakage switches. The linearity is improved without a power-hungry operational amplifier-based calibration circuit and a noticeable power consumption increment.

Originality/value

The proposed design is implemented using a standard 0.18-µm CMOS process with the active area of 102 µm2. At the power consumption of 5.6 µW, the measured linearity is −63 dB, which is nearly 27 dB better than conventional active pixel sensor (APS) implementation. The proposed low-power buffer circuit increase not only the performance of the SIS but also the lifetime of the smart perception system.

Details

Sensor Review, vol. 40 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2008

K. Arshak, A. Arshak, E. Jafer, D. Waldern and J. Harris

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter…

2852

Abstract

Purpose

To develop a wireless sensor micro‐systems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter, embedded microcontroller unit (MCU), and RF communication modules. This has now become the focus of attention in many biomedical applications.

Design/methodology/approach

The system prototype consists of miniature FSK transceiver integrated with MCU in one small package, chip antenna, and capacitive interface circuitry based on Delta‐sigma modulator. At the base station side, an FSK receiver/transmitter is connected to another MCU unit, which send the received data or received instructions from a PC through a graphical user interface GUI. Industrial, scientific and medical band RF (433 MHz) was used to achieve half duplex communication between the two sides. A digital filtering has been used in the capacitive interface to reduce noise effects forming capacitance to digital converter. All the modules of the mixed signal system are integrated in a printed circuit board of size 22.46 × 20.168 mm.

Findings

An innovation circuits and system techniques for building advanced smart medical devices have been discussed. Low‐power consumption and high reliability are among the main criteria that must be given priority when designing such wirelessly powered microsystems. Switched capacitors readout circuits have been found to be suitable for pressure sensing low‐power applications.

Research limitations/implications

The presented wireless prototype needs a second phase of development that will lead to a further reduction in both size and power consumption. Currently, the main limitation of the RF system is the number of working hours according to the selected battery.

Practical implications

The developed system was found to be useful in terms of measuring pressure and temperature in a system of either slow or fast physical change. It would be a good idea to explore the system performance in human or animal trials.

Originality/value

This paper fulfils useful information for capacitive interface circuitries and presents a new short‐range wireless system that has different design features.

Details

Microelectronics International, vol. 25 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 December 2004

K. Arshak, E. Jafer, G. Lyons, D. Morris and O. Korostynska

The development of a sensor microsystems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter…

2703

Abstract

The development of a sensor microsystems containing all the components of data acquisition system, such as sensors, signal‐conditioning circuits, analog‐digital converter, interface circuits and embedded microcontroller (MCU), has become the focus of attention in many biomedical applications. A review of the microsystems technology is presented in this paper, along with a discussion of the recent trends and challenges associated with its developments. A basic description of each sub‐system is also given. This includes the different front end, mixed analog‐digital, power management, and radio transmitter‐receiver circuits. These sub‐system designs are presented and discussed in a comparative study and final remarks are made. The performance of each sub‐system is assessed regarding many aspects related to the overall system performance.

Details

Microelectronics International, vol. 21 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 October 2018

Shashi Kumar, Pradeep Kumar Rathore, Brishbhan Singh Panwar and Jamil Akhtar

This paper aims to describe the fabrication and characterization of current mirror-integrated microelectromechanical systems (MEMS)-based pressure sensor.

Abstract

Purpose

This paper aims to describe the fabrication and characterization of current mirror-integrated microelectromechanical systems (MEMS)-based pressure sensor.

Design/methodology/approach

The integrated pressure-sensing structure consists of three identical 100-µm long and 500-µm wide n-channel MOSFETs connected in a resistive loaded current mirror configuration. The input transistor of the mirror acts as a constant current source MOSFET and the output transistors are the stress sensing MOSFETs embedded near the fixed edge and at the center of a square silicon diaphragm to sense tensile and compressive stresses, respectively, developed under applied pressure. The current mirror circuit was fabricated using standard polysilicon gate complementary metal oxide semiconductor (CMOS) technology on the front side of the silicon wafer and the flexible pressure sensing square silicon diaphragm, with a length of 1,050 µm and width of 88 µm, was formed by bulk micromachining process using tetramethylammonium hydroxide solution on the backside of the wafer. The pressure is monitored by the acquisition of drain voltages of the pressure sensing MOSFETs placed near the fixed edge and at the center of the diaphragm.

Findings

The current mirror-integrated pressure sensor was successfully fabricated and tested using in-house developed pressure measurement system. The pressure sensitivity of the tested sensor was found to be approximately 0.3 mV/psi (or 44.6 mV/MPa) for pressure range of 0 to 100 psi. In addition, the pressure sensor was also simulated using Intellisuite MEMS Software and simulated pressure sensitivity of the sensor was found to be approximately 53.6 mV/MPa. The simulated and measured pressure sensitivities of the pressure sensor are in close agreement.

Originality/value

The work reported in this paper validates the use of MOSFETs connected in current mirror configuration for the measurement of tensile and compressive stresses developed in a silicon diaphragm under applied pressure. This current mirror readout circuitry integrated with MEMS pressure-sensing structure is new and fully compatible to standard CMOS processes and has a promising application in the development CMOS-MEMS-integrated smart sensors.

Article
Publication date: 20 December 2019

Shashi Kumar, Gaddiella Diengdoh Ropmay, Pradeep Kumar Rathore, Peesapati Rangababu and Jamil Akhtar

This paper aims to describe the fabrication, packaging and testing of a resistive loaded p-channel metal-oxide-semiconductor field-effect transistor-based (MOSFET-based) current…

Abstract

Purpose

This paper aims to describe the fabrication, packaging and testing of a resistive loaded p-channel metal-oxide-semiconductor field-effect transistor-based (MOSFET-based) current mirror-integrated pressure transducer.

Design/methodology/approach

Using the concept of piezoresistive effect in a MOSFET, three identical p-channel MOSFETs connected in current mirror configuration have been designed and fabricated using the standard polysilicon gate process and microelectromechanical system (MEMS) techniques for pressure sensing application. The channel length and width of the p-channel MOSFETs are 100 µm and 500 µm, respectively. The MOSFET M1 of the current mirror is the reference transistor that acts as the constant current source. MOSFETs M2 and M3 are the pressure-sensing transistors embedded on the diaphragm near the mid of fixed edge and at the center of the square diaphragm, respectively, to experience both the tensile and compressive stress developed due to externally applied input pressure. A flexible square diaphragm having a length of approximately 1,000 µm and thickness of 50 µm has been realized using deep-reactive ion etching of silicon on the backside of the wafer. Then, the fabricated sensor chip has been diced and mounted on a TO8 header for the testing with pressure.

Findings

The experimental result of the pressure sensor chip shows a sensitivity of approximately 0.2162 mV/psi (31.35 mV/MPa) for an input pressure of 0-100 psi. The output response shows a good linearity and very low-pressure hysteresis. In addition, the pressure-sensing structure has been simulated using the parameters of the fabricated pressure sensor and from the simulation result a pressure sensitivity of approximately 0.2283 mV/psi (33.11 mV/MPa) has been observed for input pressure ranging from 0 to 100 psi with a step size of 10 psi. The simulated and experimentally tested pressure sensitivities of the pressure sensor are in close agreement with each other.

Originality/value

This current mirror readout circuit-based MEMS pressure sensor is new and fully compatible to standard CMOS processes and has a promising application in the development CMOS-MEMS-integrated smart sensors.

1 – 10 of 337