Search results

1 – 10 of 979
Article
Publication date: 17 June 2015

Dustin Häßler and Sascha Hothan

The application of intumescent coatings for fire protection of steel constructions is increasing. Thanks to the relative thin thickness of the coatings, the typical visual…

Abstract

The application of intumescent coatings for fire protection of steel constructions is increasing. Thanks to the relative thin thickness of the coatings, the typical visual appearance of the structures can remain essentially unchanged. In Germany, the applicability of the systems is regulated by the national as well as European technical assessments. According to the approvals, the application on steel members in tension is only allowed with limitations. Especially, the application on solid steel rods in tension is currently excluded from the approval. The paper explains the actual state of the art of the application of reactive fire protection systems applied to steel structures. Physical and technical background information are provided. Furthermore, the latest scientific results of an on-going research project funded by the German National Institute of Building Technology (DIBt) and conducted by the Federal Institute for Materials Research and Testing (BAM) will be described.

Article
Publication date: 16 August 2019

Mai Häßler, Dustin Häßler, Sascha Hothan and Simone Krüger

The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods…

Abstract

Purpose

The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods, fork end connectors and associated intersection or gusset plates. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. Intumescent fire protection coatings prevent a rapid heating of the steel and help secure the structural load-carrying capacity. Because the connection components of tension rod systems feature surface curvature and a complex geometry, high demand is placed on the intumescence and thermal protection performance of the coatings.

Design/methodology/approach

In this paper, experimental studies were carried out for steel tension rod systems with intumescent coating. The examined aspects include the foaming and cracking behaviour, the influence of different dry film thicknesses, the heating rate of the steel connecting parts in comparison to the tension rods, and the mounting orientation of the tension rods together with their fork end connectors.

Findings

The results show that a decrease in surface curvature and/or an increase in mass concentration of the steel components leads to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by the mounting orientation of the steel components.

Originality/value

The findings based on fire tests contribute to a better understanding of the intumescent coating performance on connection components of tension rod systems. This subject has not been extensively studied yet.

Details

Journal of Structural Fire Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 16 January 2024

Thomas Pinger, Mirabela Firan and Martin Mensinger

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of…

15

Abstract

Purpose

Based on the known positive effects of conventional hot-dip galvanizing under fire exposure and indicative results on zinc–aluminum coatings from smallscale tests, a series of tests were conducted on zinc-5% aluminum galvanized test specimens under fire loads to verify the previous positive findings under largescale boundary conditions.

Design/methodology/approach

The emissivity of zinc-5% aluminum galvanized surfaces applied to steel specimens was determined experimentally under real fire loads and laboratory thermal loads in accordance with the normative specifications of the standard fire curve. Both large and smallscale specimens were used in this study. The steel grade and surface conditions of the specimens were varied for both test scenarios.

Findings

Largescale tests on specimens with typical steel construction dimensions under fire loads showed that the surface emissivity of zinc-5% aluminum galvanized steel was significantly lower than that of the conventionally galvanized steel. Only minor influences from the weathering of the specimens and steel chemistry were observed. These results agree well with those obtained from smallscale tests. The design values of zinc-5% aluminum melt (Zn5Al) required for the structural fire design were proposed based on the obtained results.

Originality/value

The novel tests presented in this study are the first ones to study the behavior of zinc-5% aluminum galvanized largescale steel construction components under the influence of real fire exposure and their positive effect on the emissivity of steel components galvanized by this method. The results provide valuable insights and information on the behavior in the case of fire and the associated savings potential for steel construction.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 25 January 2022

Batuhan Der, Sylvie Raszková, František Wald, Gisèle Bihina, Christian Gaigl, Vasile Rus and Mikko Malaska

This study aims to propose a new design value, based on experimental and numerical studies, for surface emissivity of zinc hot-dip galvanized members exposed to fire.

Abstract

Purpose

This study aims to propose a new design value, based on experimental and numerical studies, for surface emissivity of zinc hot-dip galvanized members exposed to fire.

Design/methodology/approach

The paper sums up experiments, used specimens and also shows results. Four experiments were performed in a horizontal furnace and one test in a fire compartment of the experimental building. Several tests were carried out for determination of the surface emissivity of galvanized steel structures in fire. The experimental and numerical studies were used for preparation of new generation of the structural steel fire standard Eurocode EN 1993-1-2:2025.

Findings

Hot-dip galvanizing is one of the most widely used processes for corrosion protection of steel products. The new design value for surface emissivity of zinc hot-dip galvanized members exposed to fire is determined using experimental results as 0.35. The value is proposed for next generation of EN 1993-1-2:2025. If hot-dip galvanization additionally can contribute beneficially to the fire resistance of unprotected steel members, it would be a huge economic advantage.

Originality/value

Experimental studies in the past years have indicated the influence of hot-dip galvanizing on the heating of steel members. This study suggests 50% reduction of the surface emissivity of a carbon steel member. This amendment will be incorporated in future versions of Eurocodes 3 and 4 and has already been implemented in some fire design tools for steel members in order to consider the beneficial contribution of hot-dip galvanized for fire-resistance requirements of less than 60 min.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 April 1982

Tony Smith

The growth in the development of flame resistant and intumescent paints has been brought about by successive legislation and by the increasing awareness in recent years of the…

Abstract

The growth in the development of flame resistant and intumescent paints has been brought about by successive legislation and by the increasing awareness in recent years of the problem that paints can cause. The importance of developing these paints was highlighted during the Second World War when the Navy found that steel ships were no guarantee against fire loss. This was due to the accumulation of multiple layers of paint material providing material that was sufficiently flammable to spread fire from one sealed compartment to another by heat transmitted through the bulkhead. Fire remains an ever‐present hazard on ships and consequently it becomes commonsense to paint the internal structure and fitments wherever possible with a paint that will tend to resist flames. In this article we examine the various factors involved and the pigments that will enhance this property in any paint specification.

Details

Pigment & Resin Technology, vol. 11 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 1999

Angel Egbuji

The impact on business of the failure to manage non‐financial risks has been repeatedly demonstrated during the 1990s.1 Businesses are constantly faced with the need to manage…

8156

Abstract

The impact on business of the failure to manage non‐financial risks has been repeatedly demonstrated during the 1990s.1 Businesses are constantly faced with the need to manage change within their organisation. Change generates choice, which carries risk. This paper is a study of a range of issues to be addressed in risk management of organisational records. Such a study needs to begin with a consideration of the management of risk in general. The paper concludes that for risk management of organisational records to be effective, it needs to be incorporated into the decision‐making process of the organisation making it central to all activities. Risk management of records needs to be proactive not reactive.

Details

Records Management Journal, vol. 9 no. 2
Type: Research Article
ISSN: 0956-5698

Keywords

Article
Publication date: 19 May 2020

Mohamed Marzouk and Mohamed Zaher

This paper aims to apply a methodology that is capable to classify and localize mechanical, electrical and plumbing (MEP) elements to assist facility managers. Furthermore, it…

1137

Abstract

Purpose

This paper aims to apply a methodology that is capable to classify and localize mechanical, electrical and plumbing (MEP) elements to assist facility managers. Furthermore, it assists in decreasing the technical complexity and sophistication of different systems to the facility management (FM) team.

Design/methodology/approach

This research exploits artificial intelligence (AI) in FM operations through proposing a new system that uses a deep learning pre-trained model for transfer learning. The model can identify new MEP elements through image classification with a deep convolutional neural network using a support vector machine (SVM) technique under supervised learning. Also, an expert system is developed and integrated with an Android application to the proposed system to identify the required maintenance for the identified elements. FM team can reach the identified assets with bluetooth tracker devices to perform the required maintenance.

Findings

The proposed system aids facility managers in their tasks and decreases the maintenance costs of facilities by maintaining, upgrading, operating assets cost-effectively using the proposed system.

Research limitations/implications

The paper considers three fire protection systems for proactive maintenance, where other structural or architectural systems can also significantly affect the level of service and cost expensive repairs and maintenance. Also, the proposed system relies on different platforms that required to be consolidated for facility technicians and managers end-users. Therefore, the authors will consider these limitations and expand the study as a case study in future work.

Originality/value

This paper assists in a proactive manner to decrease the lack of knowledge of the required maintenance to MEP elements that leads to a lower life cycle cost. These MEP elements have a big share in the operation and maintenance costs of building facilities.

Details

Construction Innovation , vol. 20 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 979