Search results

1 – 10 of 50
Article
Publication date: 31 March 2022

Xuemei Guan, Wenfeng Li and Jingyi Huang

The purpose of this paper is to improve the dyeing effect of fast-growing fir wood dyed with reactive dyes.

Abstract

Purpose

The purpose of this paper is to improve the dyeing effect of fast-growing fir wood dyed with reactive dyes.

Design/methodology/approach

In this study, five factors including temperature, the dosage of dye accelerator, dyeing time, the dosage of fixing agent and fixing time were investigated. Then, the color difference and light resistance of the wood surface after dyeing were used as the evaluation indicators; the best dyeing process under the two indicators was obtained through the range analysis. Finally, the two indicators were considered comprehensively, and the fuzzy comprehensive evaluation method was used to obtain the best dyeing process under the comprehensive indicators.

Findings

The results show that when the comprehensive index was used as the evaluation index, the optimal dyeing process for reactive red X-3B dyeing fast-growing fir veneer was that the dyeing temperature was 65°C; the amount of dye accelerator was 25 g L−1; the dyeing time was 2 h; the amount of fixing agent was 15 g L−1; and the fixing time was 35 min.

Originality/value

The technique of wood dyeing is an important method to increase the value of wood products. When using different kinds of dyes or dyeing substrates for wood dyeing, the dyeing process is different. This study determined the best process for reactive dye dyeing of fast-growing fir veneer and provided a solution for improving the value of fast-growing fir wood.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 February 2024

Dawu Shu, Shaolei Cao, Yan Zhang, Wanxin Li, Bo Han, Fangfang An and Ruining Liu

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Abstract

Purpose

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Design/methodology/approach

The effects of temperature, the concentration of inorganic salts and Na2CO3 and the initial pH value on the degradation of RR24 were studied. Furthermore, the relationship between free radicals and RR24 degradation effect was investigated. Microscopic routes and mechanisms of dye degradation were further confirmed by testing the degradation karyoplasmic ratio of the product. The feasibility of the one-bath cyclic dyeing in the recycled dyeing wastewater was confirmed through the properties of dye utilization and color parameters.

Findings

The appropriate conditions were 0.3 g/L of sodium persulphate and treatment at 95°C for 30 min, which resulted in a decolorization rate of 98.4% for the dyeing wastewater. Acidic conditions are conducive to rapid degradation of dyes, while ·OH or SO4· have a destructive effect on dyes under alkaline conditions. In the early stage of degradation, ·OH played a major role in the degradation of dyes. For sustainable cyclic dyeing of RR24, inorganic salts were reused in this dyeing process and dye uptake increased with the times of cycles. After the fixation, some Na2CO3 may be converted to other salts, thereby increasing the dye uptake in subsequent cyclic staining. However, it has little impact on the dye exhaustion rate and color parameters of dyed fabrics.

Originality/value

The recommended technology not only reduces the quantity of dyeing wastewater but also enables the recycling of inorganic salts and water, which meets the requirements of sustainable development and clean production.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Shimaa S.M. Elhadad, Hany Kafafy, Hamada Mashaly and Ahmed Ali El-Sayed

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Abstract

Purpose

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Design/methodology/approach

The newly prepared lecithin liposome was used to encapsulate dyes for the purpose of increasing dyeing affinity. Different ratios of commercially available lecithin liposomes (1%, 3%, 5% and 7%) were used simultaneously in the dyeing of cotton and wool fabrics. The treated fabrics (cotton and wool fabrics) were confirmed using different analytical procedures such as scanning electron microscope (SEM), Fourier-transition infrared spectroscopy, ultraviolet protection factor, colour strength (K|S) measurements and fastness measurements.

Findings

The results show that increasing liposome ratios in dyeing baths leads to increased dyeing affinity for cotton and wool fabrics compared with conventional dyeing without using liposomes. In addition to that, the colour strength values, infrared spectra, SEM and fastness properties of non-liposome-dyed fabrics and liposome-dyed fabrics were investigated.

Originality/value

The research paper provides broad spectrum of green encapsulation fabrics using liposome technology to perform the dye stability, dye strength and fastness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2022

Sheraz Hussain Siddique Hussain Yousfani, Salma Farooq, Quratulain Mohtashim and Hugh Gong

Porosity is one of the most important properties of the textile substrate. It can influence the comfort of a garment by affecting its breathability and thermal conductivity…

Abstract

Purpose

Porosity is one of the most important properties of the textile substrate. It can influence the comfort of a garment by affecting its breathability and thermal conductivity. During the process of dyeing, the dye liquor comes in contact with the substrate; the absorption of the dye liquor into the substrate will be dependent on its porosity. The concept of porosity between the yarns of fabric is a common phenomenon; however, the porosity between the fibres in the yarn can also influence the dyeing behaviour of the fabric.

Design/methodology/approach

In this research, ring and rotor yarns of 25/s and 30/s counts are considered as textile substrates. The porosity of yarns was determined theoretically and experimentally using the image analysis method.

Findings

It was found that theoretical porosity is independent of the yarn manufacturing method. In addition, 30/s yarn was more porous as compared with 25/s yarn having a higher pore area. Rotor yarns had higher porosity, dye fixation and K/S as compared with ring yarns. Dyeing behaviour was also dependent on the count of yarn. Specifically, 30/s yarns have higher dye fixation as compared with 25/s yarns. However, 25/s yarns were dyed with deeper shades showing higher K/S values. Also, 25/s yarns are coarser than 30/s yarns having higher diameters and cross-sectional area, thus resulting in deeper shades and higher K/S values.

Originality/value

This novel technique is based on the comparative study of the porosity of various types of yarns using the image analysis technique. This investigation shows that the porosity between the fibres in the yarn can also influence the dyeing behaviour of the yarn.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 September 2023

Farish Armani Hamidon, Faridah Lisa Supian, Mazlina Mat Darus, Yeong Yi Wong and Nur Farah Nadia Abd Karim

The host–guest molecules are often used in various fields and applications. This paper aims to discuss the role of host–guest complexes in the textile industry, focusing on…

Abstract

Purpose

The host–guest molecules are often used in various fields and applications. This paper aims to discuss the role of host–guest complexes in the textile industry, focusing on calixarenes as a potential adsorbent for hazardous dyes. The paper begins with an introduction to nanotechnology and its many uses, including textiles.

Design/methodology/approach

The risks associated with the utilisation of dyes and its adverse effects on the environment are then also highlighted. This paper also discusses the structure and characteristics of calixarenes and their potential use as an adsorbent to extract toxic metals from aqueous solutions. The paper also explains the molecular structure of calixarenes, especially the ability of its upper and lower rims, which can be altered to yield derivatives with various selectivities for diverse guest ions and small molecules. In addition, the application of various host–guest molecules in the textiles industry to extract dyes also had been discussed.

Findings

In conclusion, the paper highlights the essential in establishing a systematic review on the significance of selective adsorbents, such as calixarenes, to isolate particular targets from diverse matrices in the textile industry.

Research limitations/implications

Only discussing several applications for several host–guest molecules.

Originality/value

The paper concisely describes various host–guest molecule applications in the textile industry, with each molecule being elaborated upon in detail.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 June 2022

Shahid Adeel, Fazal-Ur Rehman, Ayesha Amin, Nimra Amin, Fatima Batool, Atya Hassan and Meral Ozomay

This study aims to observe the coloring efficacy of coffee-based natural brown colorant for cotton dyeing under microwave (MW) treatment.

Abstract

Purpose

This study aims to observe the coloring efficacy of coffee-based natural brown colorant for cotton dyeing under microwave (MW) treatment.

Design/methodology/approach

The colorant extracted in particular (neutral and acidic) media was stimulated by MW treatment up to 6 min. Dyeing variables were optimized and 2–10 g/100 mL of sustainable anchors (mordants) have been used to get colorfast shades.

Findings

It has been found that un-irradiated acidic extract (RE) containing 5% of table salt at 80 °C for 50 min has given high color yield onto MW-irradiated cotton fabric (RC = 2 min). The utilization of 2% of Fe, 10% of tannic acid and 10% of sodium potassium tartrate before bio-coloration, whereas 4% of Fe, 10% of tannic acid and 6% of sodium potassium tartrate after bio-coloration has given good color characteristics. In comparison the application of 6% of pomegranate and turmeric extracts before bio-coloration and 6% of pomegranate and 10% of turmeric extracts after bio-coloration have given good color characteristics. New bio-mordants can be added to get more new colorfast shades.

Research limitations/implications

There is no research limitation for this work. New bio-mordants can be added to get more new colorfast shades.

Practical implications

This work has practical application for artisans, textile industry and handicrafts. It is concluded that colorant from coffee beans can be possible alternative of synthetic brown dyes and inclusion of MW rays for extraction and plant molecules as shade developers can make process more green.

Social implications

Socially, it has good impact on eco-system and global community because the effluent load is not carcinogenic in nature.

Originality/value

The work is original and contains value-added product for textiles and other allied fields.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2024

K.G. Rumesh Samarawickrama, U.G. Samudrika Wijayapala and C.A. Nandana Fernando

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric…

Abstract

Purpose

The purpose of this study is to extract and characterize a novel natural dye from the leaves of Lannea coromandelica and the extraction with finding ways of dyeing cotton fabric using three mordants.

Design/methodology/approach

The colouring agents were extracted from the leaves of Lannea coromandelica using an aqueous extraction method. The extract was characterized using analysis methods of pH, gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and cyclic voltammetry measurement. The extract was applied to cotton fabric samples using a non-mordant and three mordants under the two mordanting methods. The dyeing performance of the extracted colouring agent was evaluated using colour fastness properties, colour strength (K/S) and colour space (CIE Lab).

Findings

The aqueous dye extract showed reddish-brown colour, and its pH was 5.94. The GC-MS analysis revealed that the dye extract from the leaves of Lannea coromandelica contained active chemical compounds. The UV-vis and FTIR analyses found that groups influenced the reddish-brown colour of the dye extraction. The cyclic voltammetry measurements discovered the electrochemical properties of the dye extraction. The mordanted fabric samples showed better colour fastness properties than the non-mordanted fabric sample. The K/S and CIE Lab results indicate that the cotton fabric samples dyed with mordants showed more significant dye affinities than non-mordanted fabric samples.

Originality/value

Researchers have never discovered that the Lannea coromandelica leaf extract is a natural dye for cotton fabric dyeing. The findings of this study showed that natural dyes extracted from Lannea coromandelica leaf could be an efficient colouring agent for use in cotton fabric.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 May 2023

Tuna Uysaler, Pelin Altay and Gülay Özcan

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high…

Abstract

Purpose

In the denim industry, enzyme washing and its combination with stone washing are generally used to get the desired worn-out look. However, these conventional methods include high water, energy and time consumption. Nowadays, laser fading, which is a computer-controlled, dry, ecological finishing method, is preferred in the denim fading process. The purpose of this study is to observe the effects of chemical pretreatment applications on laser-faded denim fabric in terms of color and mechanical properties. To eliminate the enzyme washing process in denim fading and to minimize the disadvantages of laser fading, such as decreased mechanical properties and increased fabric yellowness, various chemical pretreatment applications were applied to the denim fabric before laser fading, followed by simple rinsing instead of enzyme washing.

Design/methodology/approach

Two different indigo-dyed, organic cotton denim fabrics with different unit weights were exposed to pretreatment processes and then laser treatment, followed by simple rinsing. Polysilicic acid, boric acid, borax and bicarbonate were used for pretreatment processes, and laser treatment was carried out under optimized laser parameters (40 dpi resolution and 300 µs pixel time). Tensile strength was tested, and color values (CIE L*, a*, b*, ΔE*, C* and h), color yield (K/S), yellowness and whiteness indexes were measured to identify the color differences.

Findings

Before laser fading, 30 g/L and 40 g/L polysilicic acid pretreatments for sulfur-indigo-dyed fabric and a mixture of 10 g/L boric acid and 10 g/L borax pretreatments for the fabric only indigo-dyed were recommended for the laser fading with sufficient mechanical properties and good color values.

Originality/value

With the chemical pretreatments defined in this study, it was possible to reduce yellowness and maintain the mechanical properties after laser fading, thus minimizing the disadvantages of laser treatment and also eliminating enzyme washing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 October 2023

Raphael Kanyire Seidu, Benjamin Eghan, Emmanuel Abankwah Ofori, George Kwame Fobiri, Alex Osei Afriyie and Richard Acquaye

The purpose of this study is to investigate the physical, ultraviolet (UV), colour appearance and colour fastness properties of selected fabrics dyed with natural dyes from Daboya…

Abstract

Purpose

The purpose of this study is to investigate the physical, ultraviolet (UV), colour appearance and colour fastness properties of selected fabrics dyed with natural dyes from Daboya and Ntonso communities of Ghana. The study further highlights the rich cultural heritage of traditional dyeing from these two communities. Craftsmen in West Africa especially Ghana, have sustained the traditional dyeing methods to produce textile products for consumers.

Design/methodology/approach

In this study, two sample fabrics were purchased from craftsmen at Ntonso and Daboya communities in Ghana. These fabrics were analysed at the laboratory under standard test methods for their physical, UV, colour appearance and colour fastness properties.

Findings

Results showed that all the sample fabrics have good UV shielding performance (ratings above 50+). Daboya sample fabrics (dyed with indigo dyes) produced more colour stains than the sample fabrics from Ntonso (dyed with black “kuntunkuni” dyes). The K/Ssum value or colour yield reduced after washing but that alternatively increased the calculated ultraviolet protection factor.

Practical implications

Findings from this study exposed the unique UV performance of dyed traditional fabrics (using natural dyes) from Ntonso and Daboya communities in Ghana. This inspires and enforces the need for craftsmen to improve their production cycle to produce these fabrics in different sizes which provides the necessary UV shielding abilities for consumers in the wake of climate changes.

Originality/value

This study demonstrated that the natural dyeing process at the two communities produced relatively good UV and colour fastness properties of the sample fabrics. These eco-friendly dyeing practices have survived over time to maintain and promote the concept of sustainability within the textile and fashion industry in Ghana.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 8 March 2022

Md Mehedi Hasan Rubel, Syed Rashedul Islam, Abeer Alassod, Amjad Farooq, Xiaolin Shen, Taosif Ahmed, Mohammad Mamunur Rashid and Afshan Zareen

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method…

Abstract

Purpose

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method to clean the wastewater containing reactive dye. Moreover, TiO2 nano-materials are remarkable due to their photoactive properties and valuable applications in wastewater treatment.

Design/methodology/approach

In this research, TiO2 was synthesized and deposited effectively on cotton fibers and cellulose powder using ultrasound-assisted coating. Further, tetra butyl titanate was used as a precursor to the synthesis of TiO2 nanoparticles. Reactive dye (red 195) was used in this study. X-ray Diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were performed to prove the aptitude for the formation of crystal TiO2 on the cotton fibers and cellulose powder along with TiO2 nanoparticles as well as to analyze the chemical structure. Decoloration of the wastewater was investigated through ultraviolet (UV-Visible) light at 30 min.

Findings

The experimental results revealed that the decolorization was completed at 2.0 min with the cellulose nano TiO2 treatment whereas cotton nano TiO2 treated solution contained reactive dyestuffs even after the treatment of 2 min. This was the fastest method up to now than all reported methods for sustainable decolorization of wastewater by absorption. Furthermore, this study explored that the cellulose TiO2 nano-composite was more effective than the cotton TiO2 nano-composite of decoloration wastewater for the eco-friendly remedy.

Research limitations/implications

Cotton fibers and cellulose powder with nano-TiO2, and only reactive dye (red 195) were tested.

Practical implications

With reactive dye-containing wastewater, it seems to be easier to get rid of the dye than to retain it, especially from dyeing of yarn, fabric, apparel, and as well as other sectors where dyestuffs are used.

Social implications

This research would help to reduce pollution in the environment as well as save energy and cost.

Originality/value

Decoloration of wastewater treatment is an essential new track with nano-crystalline TiO2 to fast and efficient cleaning of reactive dyes containing wastewater used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 50