Search results

1 – 10 of 979
Article
Publication date: 20 February 2024

Saba Sareminia, Zahra Ghayoumian and Fatemeh Haghighat

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring…

Abstract

Purpose

The textile industry holds immense significance in the economy of any nation, particularly in the production of synthetic yarn and fabrics. Consequently, the pursuit of acquiring high-quality products at a reduced cost has become a significant concern for countries. The primary objective of this research is to leverage data mining and data intelligence techniques to enhance and refine the production process of texturized yarn by developing an intelligent operating guide that enables the adjustment of production process parameters in the texturized yarn manufacturing process, based on the specifications of raw materials.

Design/methodology/approach

This research undertook a systematic literature review to explore the various factors that influence yarn quality. Data mining techniques, including deep learning, K-nearest neighbor (KNN), decision tree, Naïve Bayes, support vector machine and VOTE, were employed to identify the most crucial factors. Subsequently, an executive and dynamic guide was developed utilizing data intelligence tools such as Power BI (Business Intelligence). The proposed model was then applied to the production process of a textile company in Iran 2020 to 2021.

Findings

The results of this research highlight that the production process parameters exert a more significant influence on texturized yarn quality than the characteristics of raw materials. The executive production guide was designed by selecting the optimal combination of production process parameters, namely draw ratio, D/Y and primary temperature, with the incorporation of limiting indexes derived from the raw material characteristics to predict tenacity and elongation.

Originality/value

This paper contributes by introducing a novel method for creating a dynamic guide. An intelligent and dynamic guide for tenacity and elongation in texturized yarn production was proposed, boasting an approximate accuracy rate of 80%. This developed guide is dynamic and seamlessly integrated with the production database. It undergoes regular updates every three months, incorporating the selected features of the process and raw materials, their respective thresholds, and the predicted levels of elongation and tenacity.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 March 2024

Ashani Fernando, Chandana Siriwardana, David Law, Chamila Gunasekara, Kevin Zhang and Kumari Gamage

The increasing urgency to address climate change in construction has made green construction (GC) and sustainability critical topics for academia and industry professionals…

Abstract

Purpose

The increasing urgency to address climate change in construction has made green construction (GC) and sustainability critical topics for academia and industry professionals. However, the volume of literature in this field has made it impractical to rely solely on traditional systematic evidence mapping methodologies.

Design/methodology/approach

This study employs machine learning (ML) techniques to analyze the extensive evidence-base on GC. Using both supervised and unsupervised ML, 5,462 relevant papers were filtered from 10,739 studies published from 2010 to 2022, retrieved from the Scopus and Web of Science databases.

Findings

Key themes in GC encompass green building materials, construction techniques, assessment methodologies and management practices. GC assessment and techniques were prominent, while management requires more research. The results from prevalence of topics and heatmaps revealed important patterns and interconnections, emphasizing the prominent role of materials as major contributors to the construction sector. Consistency of the results with VOSviewer analysis further validated the findings, demonstrating the robustness of the review approach.

Originality/value

Unlike other reviews focusing only on specific aspects of GC, use of ML techniques to review a large pool of literature provided a holistic understanding of the research landscape. It sets a precedent by demonstrating the effectiveness of ML techniques in addressing the challenge of analyzing a large body of literature. By showcasing the connections between various facets of GC and identifying research gaps, this research aids in guiding future initiatives in the field.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 September 2023

Peiyi Liang, Feng Yang and Feifei Shan

This paper aims to examine the optimal sourcing strategies and pricing decisions of competing toy manufacturers and to discuss how manufacturers’ decisions are impacted by…

Abstract

Purpose

This paper aims to examine the optimal sourcing strategies and pricing decisions of competing toy manufacturers and to discuss how manufacturers’ decisions are impacted by competition.

Design/methodology/approach

The authors consider a single-period model to characterise the competition between two competing toy manufacturers. Both of them are free to choose between virgin material and recycled material. The authors consider two types of consumers: sensitive consumers who are concerned about product safety and prefer the toy made of virgin material and insensitive consumers who do not care what material is used in the toy. The competing manufacturers play a Cournot competition.

Findings

The results reveal a special case of a win-win situation for both the manufacturer and the consumer. In addition, an increasing number of sensitive consumers does not always raise the price of virgin-material toys.

Practical implications

The authors derive the manufacturer’s equilibrium sourcing strategies, corresponding market-clearing prices and profits obtained.

Originality/value

The paper investigates how toy manufacturers’ optimal sourcing strategies are impacted by competition, considering market segments.

Details

Journal of Modelling in Management, vol. 19 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 4 January 2023

Pan Liu

To study these issues, the authors chose a GFSC with one producer and one material supplier as research object, the supplier will offer green material to the producer and the…

Abstract

Purpose

To study these issues, the authors chose a GFSC with one producer and one material supplier as research object, the supplier will offer green material to the producer and the producer will make green food using green production technology. Then, the authors proposed that consumers' perceived value was determined by the trustworthiness levels of the related green and quality-safety information provided by the supplier and the producer. Then, considering the trustworthiness levels of the green and quality information provided by the supplier and the producer, the authors improved the demand function. Afterwards, we constructed four investment models and their income models are built and then a cost-sharing and revenue-sharing contract (hereafter, CSRS) was adopted to coordinate the GFSC.

Design/methodology/approach

With the growth of consumers environmental awareness and life level, consumers' requirements for green and high quality food are growing. In recently years, to increase consumers' perceived trustworthiness on the product greenness and quality levels, stakeholders in green food supply chain (hereafter, GFSC) start to adopt the blockchain-based traceability system (hereafter, BLTS). For investors, they need to know the investment conditions and how to coordinate the GFSC.

Findings

(1) When the revenue-sharing coefficient is less than three-fourths and higher then a certain vaule, the cost-sharing and revenue-sharing contract can make the GFSC coordinate. (2) The investment cost threshold of the BLTS has a positive relationship with the trustworthiness improvement levels of the green and quality information, the green degree of food products and the quality of food products. (3) In the proposed four investment situations, as the growth of consumers perceived credibility coefficient about the greenness information and the quality information, chain members' revenues will increase. In addition, comparing with co-investing the BLTS, benefits of chain members are lower than them in the sole investment model.

Originality/value

(1) The demand function we proposed can help chain members forecast market demand to support production or ordering decisions. (2) The investment decision policies can offer a theoretical reference for chain members to use the BLTS. (3) The CSRS will offer the theoretical reference for coordinating the supply chain after using the BLTS. Furthermore, our study method can be referenced by other scholars. (4) The study method can offer a method reference for researchers who do a similar discussion in a manufacturing supply chain. Although, our research cannot guide the industrial practices, it can serve as a reference of the similar research in industry.

Details

Kybernetes, vol. 53 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 January 2024

Peng Yin, Tao Liu, Baofeng Pan and Ningbo Liu

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient…

Abstract

Purpose

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.

Design/methodology/approach

The formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.

Findings

The results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.

Originality/value

Moreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 30 November 2023

Florencia Kalemkerian, Rossella Pozzi, Martin Tanco, Alessandro Creazza and Javier Santos

The purpose of this study is to propose a new mapping tool called Circular Value Stream Mapping (C-VSM) that combines Circular Economy principles with Lean tools to enhance…

Abstract

Purpose

The purpose of this study is to propose a new mapping tool called Circular Value Stream Mapping (C-VSM) that combines Circular Economy principles with Lean tools to enhance sustainability performance in operations.

Design/methodology/approach

To develop the C-VSM tool, the researchers conducted a literature review and a focus group. The tool was then applied to two real case studies in the agri-food sector, specifically analyzing an artichoke and olive oil producer, to assess its validity and effectiveness.

Findings

The study introduces the Circular Resource Box (CRB) as a key innovation in the C-VSM tool. This visual representation effectively captures resource circularity and how resources and wastes are managed, making it easy to identify circularity in the production process. By combining qualitative and quantitative information with this visual representation, companies can identify improvement opportunities aligned with the CE.

Research limitations/implications

The research is limited in scope as it focuses on the application of the C-VSM tool in the agri-food sector. Further research could explore its applicability in other industries and settings to understand its broader impact.

Practical implications

The C-VSM tool provides practical benefits to companies seeking to transition from linear to circular production processes. It enables practitioners to identify opportunities to reduce environmental impacts and optimize production operations in line with CE.

Originality/value

The introduction of the C-VSM tool is a novel approach that bridges the gap between Lean Manufacturing and CE concepts, advancing the understanding of how CE thinking can be effectively implemented in operations.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 9 April 2024

My-Linh Thi Nguyen and Tuan Huu Nguyen

This study examines the evidence of the impact of climate change on the financial performance of basic materials companies in Vietnam.

Abstract

Purpose

This study examines the evidence of the impact of climate change on the financial performance of basic materials companies in Vietnam.

Design/methodology/approach

The research sample includes eighty-two basic materials companies listed on the Vietnamese stock market from 2003 to 2022. This study used one-way and two-way fixed-effects feasible generalized least squares (FGLS) estimation methods.

Findings

Climate change, measured through variables including changes in temperature, average rainfall, greenhouse gas emissions and rising sea levels, has a negative impact on the financial performance of companies in this industry. The study also found that, with rising temperatures, the financial performance of steel manufacturing companies decreased less than that of coal mining and forestry companies, but increasing greenhouse gases and rising sea levels reduced the financial performance of steel companies. We did not find evidence of any difference in the impact of climate change on the financial performance of basic materials companies before and after the UN Climate Change Conference (COP 21). This is a new finding, which is consistent with empirical studies in Vietnam and different from previous studies in that it provides new evidence on the impact of climate change on the financial performance of basic materials companies in the Vietnamese market and cross-checks the impact of climate change by sector and over time.

Originality/value

To the best of our knowledge, this is one of the first articles on climate change and the financial performance of basic materials companies.

Details

Journal of Advances in Management Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0972-7981

Keywords

Article
Publication date: 25 January 2024

Mehmet Küçük

Fabrics, which are one of the raw materials of the clothing industry, constitute approximately 40–45% of the total cost of an apparel product. Due to the labor-intensive nature of…

Abstract

Purpose

Fabrics, which are one of the raw materials of the clothing industry, constitute approximately 40–45% of the total cost of an apparel product. Due to the labor-intensive nature of this industry and failure to apply scientific methods along with the manufacturing processes, the wastes in the raw materials, including fabrics, become higher. Besides, quality deficiencies are encountered due to the same reasons. This study aims to determine the optimum total fabric layer height based on the fabric type during the cutting process with a straight knife cutting machine, which provided a decrease in the cutting errors.

Design/methodology/approach

Frequently used fabric types in an enterprise operating in organic cotton knitwear were listed. During the cutting tests, the straight knife cutting machine was used as the cutting device. The weight and thickness values of the fabrics were obtained to provide a comparison basis. Two different algorithms were created to evaluate the defective pieces according to fabric type, cutting height and error placement. Cutting resistances of these fabrics were also determined to evaluate the defect reasons. In the end, optimum total fabric layer count and total cutting height suggestions were proposed for each fabric type for a minimum cutting error.

Findings

At the end of this study, the error-free layers were identified per fabric type. At the same time, the optimum cutting height was suggested for each fabric basis. For 40/1 single jersey fabrics, the cutting height should be between 2.10 cm and 10.40 cm; for 30/1 single jersey fabrics, between 1.65 cm and 5.70 cm; for 20/1 single jersey fabrics, between 1.83 cm and 6.70 cm; for two-thread fleece fabrics, between 2.13 cm and 4.70 cm; and for three-thread fleece fabrics, between 0 cm and 4.90 cm.

Research limitations/implications

Within the scope of the study, since the products made of knitted fabric were produced more frequently and in large quantities, the study was carried out with 15 different types of knitted fabrics at 10 different layers. The same methods should be applied for woven, denim and nonwoven fabric types, which would shed light on the following studies.

Originality/value

Due to scarce research carried out on the cutting procedure of the clothing industry in regards to sustainability, this study aims to contribute to this area. The main difference between this study and the studies that mostly make mathematical predictions about the cutting procedure is that it is practice-oriented.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 20 February 2024

Yuran Jin, Xiaolin Zhu, Xiaoxu Zhang, Hui Wang and Xiaoqin Liu

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital…

Abstract

Purpose

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital transformation challenges brought by 3D printing. Since the business model is a competitive weapon for modern enterprises, there is a research gap between business model innovation and digital transformation challenges for 3D-printing garment enterprises. The aim of the paper is to innovate a new business model for 3D-printing garment enterprises in digital transformation.

Design/methodology/approach

A business model innovation canvas (BMIC), a new method for business model innovation, is used to innovate a new 3D-printing clothing enterprises business model in the context of digital transformation. The business model canvas (BMC) method is adopted to illustrate the new business model. The business model ecosystem is used to design the operating architecture and mechanism of the new business model.

Findings

First, 3D-printing clothing enterprises are facing digital transformation, and they urgently need to innovate new business models. Second, mass customization and distributed manufacturing are important ways of solving the business model problems faced by 3D-printing clothing enterprises in the process of digital transformation. Third, BMIC has proven to be an effective tool for business model innovation.

Research limitations/implications

The new mass deep customization-distributed manufacturing (MDC-DM) business model is universal. As such, it can provide an important theoretical reference for other scholars to study similar problems. The digital transformation background is taken into account in the process of business model innovation. Therefore, this is the first hybrid research that has been focused on 3D printing, garment enterprises, digital transformation and business model innovation. On the other hand, business model innovation is a type of exploratory research, which means that the MDC-DM business model’s application effect cannot be immediately observed and requires further verification in the future.

Practical implications

The new business model MDC-DM is not only applicable to 3D-printing garment enterprises but also to some other enterprises that are either using or will use 3D printing to enhance their core competitiveness.

Originality/value

A new business model, MDC-DM, is created through BMIC, which allows 3D-printing garment enterprises to meet the challenges of digital transformation. In addition, the original canvas of the MDC-DM business model is designed using BMC. Moreover, the ecosystem of the MDC-DM business model is constructed, and its operation mechanisms are comprehensively designed.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 2 January 2024

Xu Li, Zeyu Xiao, Zhenguo Zhao, Junfeng Sun and Shiyuan Liu

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve…

Abstract

Purpose

To explore the economical and reasonable semi-rigid permeable base layer ratio, solve the problems caused by rainwater washing over the pavement base layer on the slope, improve its drainage function, improve the water stability and service life of the roadbed pavement and promote the application of semi-rigid permeable base layer materials in the construction of asphalt pavement in cold regions.

Design/methodology/approach

In this study, three semi-rigid base course materials were designed, the mechanical strength and drainage properties were tested and the effect and correlation of air voids on their performance indexes were analyzed.

Findings

It was found that increasing the cement content increased the strength but reduced the air voids and water permeability coefficient. The permeability performance of the sandless material was superior to the dense; the performance of the two sandless materials was basically the same when the cement content was 7%. Overall, the skeleton void (sand-containing) type gradation between the sandless and dense types is more suitable as permeable semi-rigid base material; its gradation is relatively continuous, with cement content? 4.5%, strength? 1.5 MPa, water permeability coefficient? 0.8 cm/s and voids of 18–20%.

Originality/value

The study of permeable semi-rigid base material with large air voids could help to solve the problems of water damage and freeze-thaw damage of the base layer of asphalt pavements in cold regions and ensure the comfort and durability of asphalt pavements while having good economic and social benefits.

Details

International Journal of Structural Integrity, vol. 15 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 979