Search results

1 – 10 of 170
Article
Publication date: 3 April 2019

Girendra Kumar, Ashok Kumar and H.N. Bar

The purpose of this paper is to study the effect of mean stress and stress amplitude on the asymmetric cyclic deformation behavior of SA333 Gr-6 C-Mn steel. Such type of loading…

60

Abstract

Purpose

The purpose of this paper is to study the effect of mean stress and stress amplitude on the asymmetric cyclic deformation behavior of SA333 Gr-6 C-Mn steel. Such type of loading may arise during the service period because of the load fluctuations, thermal gradients and sudden loading like seismic events. Tests were also carried out at different temperatures to understand the effect of it on sensitiveness of the materials deformation behavior.

Design/methodology/approach

Cylindrical specimen of 8-mm gauge diameter and 15-mm gauge length was fabricated from the pipe section along its axis. Stress controlled ratcheting tests were carried out by using triangular waveform for cyclic loading. The strain accumulations were measured using 12.5-mm gauge length extensometer. Ratcheting tests were carried out at fixed stress amplitude of 400 MPa and mean stress varying from 0 to 75 MPa, whereas at the fixed mean stress of 100 MPa and stress amplitude varies from 300 to 400 MPa at 300°C. To study the effect of temperature on ratcheting behavior, tests were carried out at a load of 100 MPa mean stress and 350 MPa stress amplitude, with a varying temperature between room temperature and 350°C. The stress rate of 115 MPas-1 was kept constant for all the tests.

Findings

Increase in mean stress and stress amplitude, ratcheting strain and plastic strain amplitude increases, whereas ratcheting life decreases. With an increase in temperature, ratcheting life increases and strain accumulation decreases up to 300°C, whereas on further increase in temperature, strain accumulation increases with reduction in ratcheting life. Minimum ratcheting rate was observed at 250°C and 300°C. The dynamic strain aging (DSA) phenomena lead to the hardening of the material. The investigated steel shows DSA temperature regime lies between 250°C and 300°C. The failure modes at 250°C and 300°C temperature was transgranular, whereas at 350°C complete ductile.

Research limitations/implications

The stress rate and loading condition may vary to study the ratcheting behavior.

Practical implications

From this study, the critical cyclic load may be determined. The DSA temperature regime of this material is determined at this stress rate. This could help to evaluate the cyclic deformation behavior of the material with temperature changes.

Originality/value

In this investigation, the DSA temperature regime has been determined where maximum ratcheting life, minimum strain accumulation and ratcheting rate were observed. The critical load where the minimum life of the material occurred at elevated temperature is 100 MPa mean stress and 400 MPa stress amplitude.

Details

World Journal of Engineering, vol. 16 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2015

Hong Gao, Jianhua Ma, Lilan Gao, Dunji Yu and Jinsheng Sun

The purpose of this paper is to determine: how the thermal cycling aging affects the ratcheting behavior of anisotropic conductive adhesive film (ACF); how the loading conditions…

Abstract

Purpose

The purpose of this paper is to determine: how the thermal cycling aging affects the ratcheting behavior of anisotropic conductive adhesive film (ACF); how the loading conditions and loading history affect the ratcheting strain and strain rate of ACF with different thermal cycling aging histories.

Design/methodology/approach

The ACF of CP6920F was cured at 190°C in an electro-thermal vacuum drying apparatus for 30 s. The cured specimens were put into the thermal cycling chamber (−40-150°C) for aging to 25, 50, 100, 200 and 500 cycles. A series of uniaxial ratcheting tests of aged ACF after different thermal cycles was carried out under stress control at 80°C.

Findings

The ACF subjected to larger number of thermal aging cycles exhibits less ratcheting strain under the same loading conditions. The ACF with the same thermal cycling aging history shows more ratcheting strain and a higher ratcheting strain rate when loaded under a larger mean stress or stress amplitude or a lower loading rate. The ratcheting behavior of aged ACF is found to be more sensitive to the lower loading rate. The higher mean stress (or stress amplitude) enhances the deformation resistance and consequently restrains the ratcheting strain of subsequent cycling with a lower mean stress (or stress amplitude). The prior lower loading rate accelerates the plastic deformation more significantly than the higher one.

Originality/value

The influencing trends of thermal cycling aging, loading condition and loading history on ratcheting behavior of ACF are obtained, which is important for the design and safety assessment of ACF joints.

Details

Soldering & Surface Mount Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 March 2018

Dylan Agius, Mladenko Kajtaz, Kyriakos I. Kourousis, Chris Wallbrink and Weiping Hu

This study presents the improvements of the multicomponent Armstrong–Frederick model with multiplier (MAFM) performance through a numerical optimisation methodology available in a…

Abstract

Purpose

This study presents the improvements of the multicomponent Armstrong–Frederick model with multiplier (MAFM) performance through a numerical optimisation methodology available in a commercial software. Moreover, this study explores the application of a multiobjective optimisation technique for the determination of the parameters of the constitutive models using uniaxial experimental data gathered from aluminium alloy 7075-T6 specimens. This approach aims to improve the overall accuracy of stress–strain response, for not only symmetric strain-controlled loading but also asymmetrically strain- and stress-controlled loading.

Design/methodology/approach

Experimental data from stress- and strain-controlled symmetric and asymmetric cyclic loadings have been used for this purpose. The analysis of the influence of the parameters on simulation accuracy has led to an adjustment scheme that can be used for focused optimisation of the MAFM model performance. The method was successfully used to provide a better understanding of the influence of each model parameter on the overall simulation accuracy.

Findings

The optimisation identified an important issue associated with competing ratcheting and mean stress relaxation objectives, highlighting the issues with arriving at a parameter set that can simulate ratcheting and mean stress relaxation for load cases not reaching at complete relaxation.

Practical implications

The study uses a strain-life fatigue application to demonstrate the importance of incorporating a technique such as the presented multiobjective optimisation method to arrive at robust parameters capable of accurately simulating a variety of transient cyclic phenomena.

Originality/value

The proposed methodology improves the accuracy of cyclic plasticity phenomena and strain-life fatigue simulations for engineering applications. This study is considered a valuable contribution for the engineering community, as it can act as starting point for further exploration of the benefits that can be obtained through material parameter optimisation methodologies for models of the MAFM class.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 September 2015

Lilan Gao, Hong Gao and Xu Chen

This review paper aims to provide a better understanding of formulation and processing of anisotropic conductive adhesive film (ACF) material and to summarize the significant…

Abstract

Purpose

This review paper aims to provide a better understanding of formulation and processing of anisotropic conductive adhesive film (ACF) material and to summarize the significant research and development work for the mechanical properties of ACF material and joints, which helps to the development and application of ACF joints with better reliability in microelectronic packaging systems.

Design/methodology/approach

The ACF material was cured at high temperature of 190°C, and the cured ACF was tested by conducting the tensile experiments with uniaxial and cyclic loads. The ACF joint was obtained with process of pre-bonding and final bonding. The impact tests and shear tests of ACF joints were completed with different aging conditions such as high temperature, thermal cycling and hygrothermal aging.

Findings

The cured ACF exhibited unique time-, temperature- and loading rate-dependent behaviors and a strong memory of loading history. Prior stress cycling with higher mean stress or stress amplitude restrained the ratcheting strain in subsequent cycling with lower mean stress or stress amplitude. The impact strength and adhesive strength of ACF joints increased with increase of bonding temperature, but they decreased with increase of environment temperature. The adhesive strength and life of ACF joints decreased with hygrothermal aging, whereas increased firstly and then decreased with thermal cycling.

Originality/value

This study is to review the recent investigations on the mechanical properties of ACF material and joints in microelectronic packaging applications.

Details

Soldering & Surface Mount Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 18 July 2012

Salim Meziani, Lynda Djimli and Lakhdar Taleb

This paper is devoted to the study of the role of identification data base on the prediction of the cyclic behavior of the 304 L stainless steel on ambient temperature. The…

Abstract

This paper is devoted to the study of the role of identification data base on the prediction of the cyclic behavior of the 304 L stainless steel on ambient temperature. The identification is done using the Chaboche constitutive model. The investigations have been performed with reference to both unixial and biaxial experimental data, strain controlled tests, ratchet tests, ratchet tests after a strain controlled strain tests. Results were reported in graphs representing the effect of the optimized parameters on the prediction of the behavior of the material. The parameters of the Chaboche model have been calculated from the curve of a unixial strain controlled test. Then they were optimized using different data base on ZéBuLoN. The simulation obtained by optimized parameters gives a good representation of stabilised loop in the way it is done with the simulated test. Ratchet was also well predicted in the case of optimization done with all tests considered in the simulation. In this paper it has been demonstrated that the optimization using different data bases have a big impact on the cyclic results and ratchet results.

Details

World Journal of Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 November 2018

Aref Mehditabar and Gholam H. Rahimi

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and…

Abstract

Purpose

This study aims to explain the characterization of cyclic behavior of a tube made of functionally graded material (FGM) under different combinations of internal pressure and cyclic through-thickness temperature gradients.

Design/methodology/approach

The normality rule, nonlinear kinematic hardening Chaboche model and Von Mises yield criterion were used to model the constitutive behavior of an FG tube in the incremental form. The material properties and hardening parameters of the Chaboche model vary according to the power-law function in the radial direction. The backward Euler integration scheme combined with return mapping algorithm which relies on the solution of a nonlinear equation performs the numerical procedure. The algorithm is implemented within the user subroutine UMAT in ABAQUS/standard.

Findings

The published works on FG components considering only the mechanical and physical properties as a function of spatial coordinate and nonlinear kinematic hardening parameters have not been considered to be changed continuously from one surface to another. Motivated by this, the present paper has deliberately been targeted to tackle this kind of problem to simulate the cyclic behavior of an FG tube as accurately as possible. In addition, to classify various behaviors the FG tube under cyclic thermomechanical loadings, Bree’s interaction diagram as an essential tool in designing of the FG pressure vessels in many engineering sectors is presented.

Originality/value

Provides a detailed description of the FG parameters of Chaboche kinematic hardening parameters in the adopted constitutive equations. In this paper, the significant effects of internal pressure values, kinematic hardening models and also FG inhomogeneity index related to the hardening rule parameters on plastic deformation of the FG tube are illustrated. Finally, the various cyclic behaviors of the FG tube under different combinations of thermomechanical loading are fully explored.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1986

H. Burlet and G. Cailletaud

A formulation of non‐linear kinematic hardening in plasticity is given, with a short description of the model properties under cyclic loading. A resolution algorithm based on the…

Abstract

A formulation of non‐linear kinematic hardening in plasticity is given, with a short description of the model properties under cyclic loading. A resolution algorithm based on the initial stress method is implemented in a two‐dimensional finite element code (ZEBULON). The procedure is tested on examples including mechanical and thermal loading. Some remarks are made on the maximum increment size, the relative efficiency of ‘radial return’ and ‘secant stiffness method’ is discussed. Finally, the possibilities of the model concerning ratchetting, cyclic hardening and softening are shown.

Details

Engineering Computations, vol. 3 no. 2
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 15 February 2021

Hala Messai, Salim Meziani and Athmane Fouathia

The purpose of this paper is to highlight the performance of the Chaboche model in relation to the database identification, tests with imposed deformations were conducted at room…

Abstract

Purpose

The purpose of this paper is to highlight the performance of the Chaboche model in relation to the database identification, tests with imposed deformations were conducted at room temperature on 304L stainless steel specimens.

Design/methodology/approach

The first two tests were performed in tension-compression between ±0.005 and ±0.01; in the third test, each cycle is composed of the combination of a compression tensile cycle between ±0.01 followed by a torsion cycle between ±0.01723 (non-proportional path), and the last, uniaxial ratcheting test with a mean stress between 250 MPa and −150 MPa. Several identifications of a Chaboche-type model were then performed by considering databases composed of one or more of the cited tests. On the basis of these identifications, the simulations of a large number of ratchet tests in particular were carried out.

Findings

The results present the effect of the optimized parameters on the prediction of the behavior of materials which is reported in the graphs, Optimizations 1 and 2 of first and second tests and Optimization 4 of the third test giving a good prediction of the increasing/decreasing pre-deformation amplitude.

Originality/value

The quality of the model's predictions strongly depends on the richness of the database used for the identification of the parameters.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2007

Göran Johansson and Magnus Ekh

This paper aims to speed up finite element analyses of structures with a highly nonlinear material response subjected to many loading cycles.

Abstract

Purpose

This paper aims to speed up finite element analyses of structures with a highly nonlinear material response subjected to many loading cycles.

Design/methodology/approach

An approach where large time increments are taken in an adaptive fashion is presented. The size of the large time increments typically spans several loading cycles and is based on Taylor series expansions of the response combined with error control.

Findings

The suggested adaptive algorithm is simple compared with some well‐known alternatives in the literature. It also has the inherent convergence property that it reduces to the classical time incrementation in the case where the estimated error is too large.

Research limitations/implications

The algorithm is suitable for (restricted to) a special class of problems where the material response versus a representative time sequence are smooth curves. The simplicity of the method results in a robust algorithm.

Originality/value

Similar algorithms have been presented earlier in the literature but the present work introduces some enhancements, e.g. accounting for general internal variables also in the error estimate. In addition, the present work considers a more complex constitutive model compared with earlier work within the research field.

Details

Engineering Computations, vol. 24 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1986

W.W. Bird and J.B. Martin

An algorithm is described for the incremental solution of elastic—plastic finite element analysis using a piecewise holonomic constitutive law based on a von Mises yield…

Abstract

An algorithm is described for the incremental solution of elastic—plastic finite element analysis using a piecewise holonomic constitutive law based on a von Mises yield condition. The holonomic assumption effectively converts each incremental problem into a non‐linear elastic—plastic problem. The algorithm is iterative, substituting the non‐linear strain potential by a quadratic potential at each iteration, and convergence is proved. The algorithm has been implemented into a finite element program as a series of secant modulus approximations, and results for a variety of problems are given. The rate of convergence is fairly slow, but the algorithm can be very easily programmed as an extension of an elastic program, and may have value as an independent method of determining incremental elastic—plastic solutions.

Details

Engineering Computations, vol. 3 no. 3
Type: Research Article
ISSN: 0264-4401

1 – 10 of 170