Search results

1 – 10 of 15
Article
Publication date: 20 October 2014

Palash Kumar Maji, Amit Jyoti Banerjee, Partha Sarathi Banerjee and Sankar Karmakar

The purpose of this paper was development of patient-specific femoral prosthesis using rapid prototyping (RP), a part of additive manufacturing (AM) technology, and comparison of…

1232

Abstract

Purpose

The purpose of this paper was development of patient-specific femoral prosthesis using rapid prototyping (RP), a part of additive manufacturing (AM) technology, and comparison of its merits or demerits over CNC machining route.

Design/methodology/approach

The customized femoral prosthesis was developed through computed tomography (CT)-3D CAD-RP-rapid tooling (RT)-investment casting (IC) route using a stereolithography apparatus (SLA-250) RP machine. A similar prosthesis was also developed through conventional CT-CAD-CAM-CNC, using RP models to check the fit before machining. The dimensional accuracy, surface finish, cost and time involvement were compared between these two routes.

Findings

In both the routes, RP had an important role in checking the fit. Through the conventional machining route, higher-dimensional accuracies and surface finish were achieved. On the contrary, RP route involved lesser time and cost, with rougher surface finish on the prosthesis surface and less internal shrinkage porosity. The rougher surface finish of the prosthesis is favourable for bone ingrowths after implantation and porosity reduce the effective stiffness of the prosthesis, leading to reduced stress shielding effect after implantation.

Research limitations/implications

As there is no AM machine for direct fabrication of metallic component like laser engineered net shaping and electron beam melting in our Institute, the metallic prosthesis was developed through RP-RT-IC route using the SLA-250 machine.

Practical implications

The patient-specific prosthesis always provides better fit and favourable stress distribution, leading to longer life of the prosthesis. The described RP route can be followed to develop the customized prosthesis at lower price within the shortest time.

Originality/value

The described methodology of customized prosthesis development through the AM route and its advantages are applicable for development of any metallic prostheses.

Details

Rapid Prototyping Journal, vol. 20 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 July 2013

Marie Cronskär, Mikael Bäckström and Lars‐Erik Rännar

The purpose of this paper is to study the use of the additive manufacturing (AM) method, electron beam melting (EBM), for manufacturing of customized hip stems. The aim is to…

2126

Abstract

Purpose

The purpose of this paper is to study the use of the additive manufacturing (AM) method, electron beam melting (EBM), for manufacturing of customized hip stems. The aim is to investigate EBM's feasibility and commercial potential in comparison with conventional machining, and to map out advantages and drawbacks of using EBM in this application. One part of the study concerns the influence on the fatigue properties of the material, when using the raw surface directly from the EBM machine, in parts of the implant.

Design/methodology/approach

The research is based on a case study of manufacturing a batch of seven individually adapted hip stems. The stems were manufactured both with conventional machining and with EBM technology and the methods were compared according to the costs of materials, time for file preparation and manufacturing. In order to enhance bone ingrowths in the medial part of the stem, the raw surface from EBM manufacturing is used in that area and initial fatigue studies were performed, to get indications on how this surface influences the fatigue properties.

Findings

The cost reduction due to using EBM in this study was 35 per cent. Fatigue tests comparing milled test bars with raw surfaced bars indicate a reduction of the fatigue limit by using the coarse surface.

Originality/value

The paper presents a detailed comparison of EBM and conventional machining, not seen in earlier research. The fatigue tests of raw EBM‐surfaces are interesting since the raw surface has shown to enhance bone ingrowths and therefore is suitable to use in some medical applications.

Article
Publication date: 27 July 2012

Sadegh Rahmati, Farid Abbaszadeh and Farzam Farahmand

The purpose of this paper is to present an improved methodology for design of custom‐made hip prostheses, through integration of advanced image processing, computer aided design…

1272

Abstract

Purpose

The purpose of this paper is to present an improved methodology for design of custom‐made hip prostheses, through integration of advanced image processing, computer aided design (CAD) and additive manufacturing (AM) technologies.

Design/methodology/approach

The proposed methodology for design of custom‐made hip prostheses is based on an independent design criterion for each of the intra‐medullary and extra‐medullary portions of the prosthesis. The intra‐medullar part of the prosthesis is designed using a more accurate and detailed description of the 3D geometry of the femoral intra‐medullary cavity, including the septum calcar ridge, so that an improved fill and fit performance is achieved. The extra‐medullary portion of the prosthesis is designed based on the anatomical features of the femoral neck, in order to restore the original biomechanical characteristics of the hip joint. The whole design procedure is implemented in a systematic framework to provide a fast, repeatable and non‐subjective response which can be further evaluated and modified in a preplanning simulation environment.

Findings

The efficacy of the proposed methodology for design of custom‐made hip prostheses was evaluated in a case study on a hip dysplasia patient. The cortical bone was distinguished from cancellous in CT images using a thresholding procedure. In particular the septum calcar ridge could be recognized and was incorporated in the design to improve the primary stability of the prosthesis. The lateral and frontal views of the prosthesis, with the patient's images at the background, indicated a close geometrical match with the cortical bone of femoral shaft, and a good compatibility with the anatomy of the proximal femur. Also examination of the cross sections of the prosthesis and the patient's intra‐medullary canal at five critical levels revealed close geometrical match in distal stem but less conformity in proximal areas due to preserving the septum calcar ridge. The detailed analysis of the fitting deviation between the prosthesis and point cloud data of the patient's femoral intra‐medullary canal, indicated a rest fitting deviation of 0.04 to 0.11 mm in stem. However, relatively large areas of interference fit of −0.04 mm were also found which are considered to be safe and not contributing to the formation of bone cracks. The geometrical analysis of the extra‐medullary portion of the prosthesis indicated an anteversion angle of 12.5 degrees and a neck‐shaft angle of 131, which are both in the acceptable range. Finally, a time and cost effective investment casting technique, based on AM technology, was used for fabrication of the prosthesis.

Originality/value

The proposed design methodology helps to improve the fixation stability of the custom made total hip prostheses and restore the original biomechanical characteristics of the joint. The fabrication procedure, based on AM technology, enables the production of the customized hip prosthesis more accurately, quickly and economically.

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2017

Jasgurpreet Singh Chohan and Rupinder Singh

The purpose of this paper is to review the various pre-processing and post-processing approaches used to ameliorate the surface characteristics of fused deposition modelling…

2300

Abstract

Purpose

The purpose of this paper is to review the various pre-processing and post-processing approaches used to ameliorate the surface characteristics of fused deposition modelling (FDM)-based acrylonitrile butadiene styrene (ABS) prototypes. FDM being simple and versatile additive manufacturing technique has a calibre to comply with present need of tailor-made and cost-effective products with low cycle time. But the poor surface finish and dimensional accuracy are the primary hurdles ahead the implementation of FDM for rapid casting and tooling applications.

Design/methodology/approach

The consequences and scope of FDM pre-processing and post-processing parameters have been studied independently. The comprehensive study includes dominance, limitations, validity and reach of various techniques embraced to improve surface characteristics of ABS parts. The replicas of hip implant are fabricated by maintaining the optimum pre-processing parameters as reviewed, and a case study has been executed to evaluate the capability of vapour smoothing process to enhance surface finish.

Findings

The pre-processing techniques are quite deficient when different geometries are required to be manufactured within limited time and required range of surface finish and accuracy. The post-processing techniques of surface finishing, being effective disturbs the dimensional stability and mechanical strength of parts thus incapacitates them for specific applications. The major challenge for FDM is the development of precise, automatic and controlled mass finishing techniques with low cost and time.

Research limitations/implications

The research assessed the feasibility of vapour smoothing technique for surface finishing which can make consistent castings of customized implants at low cost and shorter lead times.

Originality/value

The extensive research regarding surface finish and dimensional accuracy of FDM parts has been collected, and inferences made by study have been used to fabricate replicas to further examine advanced finishing technique of vapour smoothing.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 January 2011

Ryszard Uklejewski, Mariusz Winiecki, Piotr Rogala and Janusz Mielniczuk

The aim of this paper is to present the main results of a research project finished in 2008 which concerned the selective laser melted (SLM) prototype of a new kind of minimally…

1351

Abstract

Purpose

The aim of this paper is to present the main results of a research project finished in 2008 which concerned the selective laser melted (SLM) prototype of a new kind of minimally invasive resurfacing hip arthroplasty (RHA) endoprosthesis with the original multi‐spiked connecting scaffold (MSC‐Scaffold). Previous attempts performed in pre‐Direct Metal Manufacturing (DMM) era demonstrated that it was impossible to manufacture suitable prototypes of this RHA endoprosthesis (especially of the MSC‐Scaffold) using traditional machining technologies. Owing to an extensive development of DMM technologies observed in recent years the manufacturing of such prototypes has become possible.

Design/methodology/approach

Computer aided design models of pre‐prototypes and the prototype of the RHA endoprosthesis with MSC‐Scaffold were designed and initially optimized within the claims and the general assumptions of international patents by Rogala. Prototyping in SLM technology was subcontracted to SLM Tech Center (Paderborn, Germany). Macroscopic and SEM microscopic evaluation of the MSC‐Scaffold was performed using SLM manufactured prototypes and paying special attention to the quality and precision of manufacturing.

Findings

It was found that SLM can be successfully applied to manufacturing of prototypes of the original minimally invasive RHA endoprosthesis. The manufacturing quality of the 3D spikes system of the MSC‐Scaffold, which mimics the interdigitations of articular subchondral bone, has been proved to be geometrically corresponding to the biological original. Nevertheless, some pores and non‐melted zones were found in SLM prototyped RHA endoprosthesis cross‐sections which need to be eliminated to minimize the potential risk of clinical failure.

Research limitations/implications

The presented case study was performed with a limited number of samples. More research needs to be performed on the rapid prototyped samples including microstructural and mechanical tests. The results may enable the optimization of the SLM manufacturing process of the prototypes of the minimally invasive RHA endoprosthesis with MSC‐Scaffold.

Practical implications

The SLM can be considered as potentially suitable for the fabrication of patient‐fitted minimally invasive RHA endoprostheses with MSC‐Scaffold.

Originality/value

For the first time, largely owing to SLM technology, it was possible to manufacture the prototype of the original minimally invasive RHA endoprosthesis with MSC‐Scaffold suitable for further research.

Details

Rapid Prototyping Journal, vol. 17 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 June 2021

Luis Lisandro Lopez Taborda, Heriberto Maury and Jovanny Pacheco

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to…

1145

Abstract

Purpose

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to corroborate and deepen other researchers’ findings, dissipate divergences and provide directing to future work on the subject from a methodological and convergent perspective.

Design/methodology/approach

This study analyzes the previous reviews (about 15 reviews) and based on the consensus and the classifications provided by these authors, a significant sample of research is analyzed in the design for additive manufacturing (DFAM) theme (approximately 80 articles until June of 2017 and approximately 280–300 articles until February of 2019) through descriptive statistics, to corroborate and deepen the findings of other researchers.

Findings

Throughout this work, this paper found statistics indicating that the main areas studied are: multiple objective optimizations, execution of the design, general DFAM and DFAM for functional performance. Among the main conclusions: there is a lack of innovation in the products developed with the methodologies, there is a lack of exhaustivity in the methodologies, there are few efforts to include environmental aspects in the methodologies, many of the methods include economic and cost evaluation, but are not very explicit and broad (sustainability evaluation), it is necessary to consider a greater variety of functions, among other conclusions

Originality/value

The novelty in this study is the methodology. It is very objective, comprehensive and quantitative. The starting point is not the case studies nor the qualitative criteria, but the figures and quantities of methodologies. The main contribution of this review article is to guide future work on the subject from a methodological and convergent perspective and this article provides a broad database with articles containing information on many issues to make decisions: design methodology; optimization; processes, selection of parts and materials; cost and product management; mechanical, electrical and thermal properties; health and environmental impact, etc.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2021

Dilpreet Singh, Bhavuk Garg, Pulak Mohan Pandey and Dinesh Kalyanasundaram

The purpose of this paper is to establish a methodology for the design and development of patient-specific elbow implant with an elastic modulus close to that of the human bone…

Abstract

Purpose

The purpose of this paper is to establish a methodology for the design and development of patient-specific elbow implant with an elastic modulus close to that of the human bone. One of the most preferred implant material is titanium alloy which is about 8 to 9 times higher in strength than that of the human bone and is the closest than other metallic biomedical materials.

Design/methodology/approach

The methodology begins with the design of the implant from patient-specific computed tomography information and incorporates the manufacturing of the implant via a novel rapid prototyping assisted microwave sintering process.

Findings

The elastic modulus and the flexural strength of the implant were observed to be comparable to that of human elbow bones. The fatigue test depicts that the implant survives the one million cycles under physiological loading conditions. Other mechanical properties such as impact energy absorption, hardness and life cycle tests were also evaluated. The implant surface promotes human cell growth and adhesion and does not cause any adverse or undesired effects i.e. no cytotoxicity.

Practical implications

Stress shielding, and therefore, aseptic loosening of the implant shall be avoided. In the event of any trauma post-implantation, the implant would not hurt the patient.

Originality/value

The present study describes a methodology for the first time to be able to obtain the strength required for the medical implant without sacrificing the fatigue life requirement.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 March 2023

Anderson Ferreira De Lima, Walter Cardoso Satyro, José Celso Contador, Marco Aurélio Fragomeni, Rodrigo Franco Gonçalves, Mauro Luiz Martens and Fabio Henrique Pereira

This study aims to broaden the understanding of the additive manufacturing (AM) body of knowledge, presenting a model better suited to the current level of technological…

Abstract

Purpose

This study aims to broaden the understanding of the additive manufacturing (AM) body of knowledge, presenting a model better suited to the current level of technological development that supports the decision to implement AM in industries, based on the experience of companies in the industry of orthopedic medical implants.

Design/methodology/approach

Based on the design-science research, the model for the decision to adopt the AM was designed and submitted to experts from the industry of orthopedic implants in Brazil for refinement. For the empirical test of the final model, interviews were used in a company that was considering implementing AM and in another that was not, to evaluate the model.

Findings

The model considers seven dimensions for decision analysis of AM implementation: legal constraints, financial, technological, operational, organizational, supply chain and external factors, being subdivided into 42 criteria that play a relevant role in the implementation decision. The analysis factor of each dimension and criteria are also presented.

Originality/value

The model seeks to be as complete as possible and can be used by various industrial productive sectors, incorporating the analysis of the requirements of health regulatory agencies, suitable for the analysis of the decision to implement AM for the manufacturing of medical implants, not found in other models.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

1 – 10 of 15