Search results

1 – 10 of 171
Content available
Article
Publication date: 1 December 2004

114

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 2 January 2024

Guillermo Guerrero-Vacas, Jaime Gómez-Castillo and Oscar Rodríguez-Alabanda

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using…

Abstract

Purpose

Polyurethane (PUR) foam parts are traditionally manufactured using metallic molds, an unsuitable approach for prototyping purposes. Thus, rapid tooling of disposable molds using fused filament fabrication (FFF) with polylactic acid (PLA) and glycol-modified polyethylene terephthalate (PETG) is proposed as an economical, simpler and faster solution compared to traditional metallic molds or three-dimensional (3D) printing with other difficult-to-print thermoplastics, which are prone to shrinkage and delamination (acrylonitrile butadiene styrene, polypropilene-PP) or high-cost due to both material and printing equipment expenses (PEEK, polyamides or polycarbonate-PC). The purpose of this study has been to evaluate the ease of release of PUR foam on these materials in combination with release agents to facilitate the mulding/demoulding process.

Design/methodology/approach

PETG, PLA and hardenable polylactic acid (PLA 3D870) have been evaluated as mold materials in combination with aqueous and solvent-based release agents within a full design of experiments by three consecutive molding/demolding cycles.

Findings

PLA 3D870 has shown the best demoldability. A mold expressly designed to manufacture a foam cushion has been printed and the prototyping has been successfully achieved. The demolding of the part has been easier using a solvent-based release agent, meanwhile the quality has been better when using a water-based one.

Originality/value

The combination of PLA 3D870 and FFF, along with solvent-free water-based release agents, presents a compelling low-cost and eco-friendly alternative to traditional metallic molds and other 3D printing thermoplastics. This innovative approach serves as a viable option for rapid tooling in PUR foam molding.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 13 June 2019

Patrick Holzmann, Robert J. Breitenecker and Erich J. Schwarz

The purpose of this paper is to analyze the business models that 3D printer manufacturers apply to commercialize their technologies. The authors investigate these business models

7600

Abstract

Purpose

The purpose of this paper is to analyze the business models that 3D printer manufacturers apply to commercialize their technologies. The authors investigate these business models and analyze whether there are business model patterns. The paper describes the gestalt of the business model patterns and discusses differences and similarities.

Design/methodology/approach

The authors review the literatures on business models and 3D printing technology. The authors apply a componential business model approach and carry out an in-depth analysis of the business models of 48 3D printer manufacturers in Europe and North America. The authors develop a framework focusing on value proposition, value creation and value capture components. Cluster analysis is used to identify business model patterns.

Findings

The results indicate that there are two distinct business model patterns in the industry. The authors termed these patterns the “low-cost online business model” and the “technology expert business model.” The results demonstrate that there is a relationship between business model and technology. The identified patterns are independent of age, company size and country of origin.

Research limitations/implications

The empirical results complement and extend existing literature on business models. The authors contribute to the discussion on business models in the context of novel technology. The technology seems to influence the gestalt of the business model. The sample is limited to European and North American companies and the analysis is based on secondary data.

Originality/value

This is the first empirical study on the business models of 3D printer manufacturers. The authors apply an original mixed-methods approach and develop a framework that can function as a starting point for future research. 3D printer manufacturers can use the identified business model patterns as blueprints to reduce the risk of failure or as a starting point for business model innovation.

Details

Journal of Manufacturing Technology Management, vol. 31 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

Content available
Article
Publication date: 1 December 2002

115

Abstract

Details

Assembly Automation, vol. 22 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 29 March 2023

Alessio Ronchini, Antonella Maria Moretto and Federico Caniato

This paper investigates how the adoption of additive manufacturing (AM) impacts upstream supply chain (SC) design and considers the influence of drivers and barriers towards the…

1759

Abstract

Purpose

This paper investigates how the adoption of additive manufacturing (AM) impacts upstream supply chain (SC) design and considers the influence of drivers and barriers towards the adoption.

Design/methodology/approach

Ten case studies investigating AM adoption by Original Equipment Manufacturers (OEMs) in five industries were conducted. This research is driven by a literature-based framework, and the results are discussed according to the theory of transaction cost economics (TCE).

Findings

The case studies reveal four patterns of AM adoption that affect upstream SC design (due to changes in supply base or types of buyer–supplier relationships): make, buy, make and buy and vertical integration. A make or buy decision is based on the level of experience with the technology, on the AM application (rapid manufacturing, prototyping or tooling) and on the need of control over production. Other barriers playing a role in the decision are the high initial investments and the lack of skills and knowledge.

Originality/value

This paper shows how different decisions regarding AM adoption result in different SC designs, with a specific focus on the upstream SC and changes in the supply base. This research is among the first to provide empirical evidence on the impact of AM adoption on upstream SCs and to identify drivers of the make or buy decision when adopting AM through the theoretical lens of TCE.

Details

International Journal of Physical Distribution & Logistics Management, vol. 53 no. 4
Type: Research Article
ISSN: 0960-0035

Keywords

Content available
85

Abstract

Details

Assembly Automation, vol. 25 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Book part
Publication date: 1 May 2019

Nils O.E. Olsson, Ali Shafqat, Emrah Arica and Andreas Økland

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Abstract

Purpose

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Design/Methodology/Approach

A survey was conducted to collect professional view on ongoing innovations in the construction sector, including 3D-printing. Participants were selected among the members of Norwegian networks for project and construction management research.

Findings

The survey highlighted effective leadership, collaboration with partners and industry-academia collaboration as primary enablers of innovation. Few of the respondents to the survey have used 3D-printing technologies.

Research Limitations/Implications

It is difficult to obtain representative samples in this type of research, including this study. The study can be seen as a snapshot of attitudes in the sector.

Practical Implications

3D-printing appear as a potentially interesting technology, especially for unstandardized construction components. Further work is needed to materialise the expectation for technological development in the construction sector.

Originality/Value

Most research on 3D-printing has focused on demonstrating technical potential. This study adds a practitioners’ perspective, with a large dose of pragmatism.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Content available
Article
Publication date: 1 December 2001

K.G. Cooper

293

Abstract

Details

Assembly Automation, vol. 21 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 3 February 2020

Jørgen Blindheim, Christer W. Elverum, Torgeir Welo and Martin Steinert

This paper proposes the combination of rapid prototyping and physical modelling as a set-based concept evaluation method in the early stage of new product development.

3706

Abstract

Purpose

This paper proposes the combination of rapid prototyping and physical modelling as a set-based concept evaluation method in the early stage of new product development.

Design/methodology/approach

The concept evaluation method is applied in a case study of a new metal additive manufacturing process for aluminium, where a set of four extruder concepts has been modelled and evaluated. Rapid prototyping was used to produce plastic models of the different designs, and plasticine feedstock material was used to physically model the metal flow during operation. Finally, the selected concept has been verified in full-scale for processing of aluminium feedstock material.

Findings

The proposed method led to several valuable insights on critical factors that were unknown at the outset of the development project. Overall, these insights enabled concept exploration and concept selection that led to a substantially better solution than the original design.

Research limitations/implications

This method can be applied for other projects where numerical approaches are not applicable or capable, and where the costs or time required for producing full-scale prototypes are high.

Practical implications

Employing this method can enable a more thorough exploration of the design space, allowing new solutions to be discovered.

Originality/value

The proposed method allows a design team to test and evaluate multiple concepts at lower cost and time than what is usually required to produce full-scale prototypes. It is, therefore, concluded to be a valuable design strategy for the early development stages of complex products or technologies.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 171