Search results

1 – 10 of over 4000
To view the access options for this content please click here
Article
Publication date: 2 August 2011

Munish Chhabra and Rupinder Singh

This paper seeks to review the industrial applications of state‐of‐the‐art additive manufacturing (AM) techniques in metal casting technology. An extensive survey of…

Downloads
3547

Abstract

Purpose

This paper seeks to review the industrial applications of state‐of‐the‐art additive manufacturing (AM) techniques in metal casting technology. An extensive survey of concepts, techniques, approaches and suitability of various commercialised rapid casting (RC) solutions with traditional casting methods is presented.

Design/methodology/approach

The tooling required for producing metal casting such as fabrication of patterns, cores and moulds with RC directly by using different approaches are presented and evaluated. Relevant case studies and examples explaining the suitability and problems of using RC solutions by various manufacturers and researchers are also presented.

Findings

Latest research to optimize the current RC solutions, and new inventions in processing techniques and materials in RC performed by researchers worldwide are also discussed. The discussion regarding the benefits of RC solutions to foundrymen, and challenges to produce accurate and cost‐effective RC amongst AM manufacturers concludes this paper.

Research limitations/implications

The research related to this survey is limited to the applicability of RC solutions to sand casting and investment casting processes. There is practically no implication in industrial application of RC technology.

Originality/value

This review presents the information regarding potential AM application – RC, which facilitates the fabrication of patterns, cores and moulds directly using the computer‐aided design data. The information available in this paper serves the purpose of researchers and academicians to explore the new options in the field of RC and especially users, manufacturers and service industries to produce casting in relatively much shorter time and at low cost and even to cast complex design components which otherwise was impossible by using traditional casting processes and CNC technology.

To view the access options for this content please click here
Article
Publication date: 5 June 2007

Elena Bassoli, Andrea Gatto, Luca Iuliano and Maria Grazia Violante

The purpose of this paper is to verify the feasibility and evaluate the dimensional accuracy of two rapid casting (RC) solutions based on 3D printing technology…

Downloads
16934

Abstract

Purpose

The purpose of this paper is to verify the feasibility and evaluate the dimensional accuracy of two rapid casting (RC) solutions based on 3D printing technology: investment casting starting from 3D‐printed starch patterns and the ZCast process for the production of cavities for light‐alloys castings.

Design/methodology/approach

Starting from the identification and design of a benchmark, technological prototypes were produced with the two RC processes. Measurements on a coordinate measuring machine allowed calculating the dimensional tolerances of the proposed technological chains. The predictive performances of computer aided engineering (CAE) software were verified when applied to the ZCast process modelling.

Findings

The research proved that both the investigated RC solutions are effective in obtaining cast technological prototypes in short times and with low costs, with dimensional tolerances that are completely consistent with metal casting processes.

Practical implications

The research assessed the feasibility and dimensional performances of two RC solutions, providing data that are extremely useful for the industrial application of the considered technologies.

Originality/value

The paper deals with experimental work on innovative techniques on which data are still lacking in literature. In particular, an original contribution to the determination of dimensional tolerances and the investigation on the predictive performances of commercial CAE software is provided.

Details

Rapid Prototyping Journal, vol. 13 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 18 April 2016

Rajesh Kumar, Rupinder Singh and IPS Ahuja

The purpose of this paper is to investigate the process capability of three-dimensional printing (3DP)-based casting solutions for non-ferrous alloy (NFA) components.

Downloads
288

Abstract

Purpose

The purpose of this paper is to investigate the process capability of three-dimensional printing (3DP)-based casting solutions for non-ferrous alloy (NFA) components.

Design/methodology/approach

After selection and design of benchmark, prototypes for six different NFA materials were prepared by using 3DP (ZCast process)-based shell moulds. Coordinate measuring machine has been used for calculating the dimensional tolerances of the NFA components. Consistency with the tolerance grades of the castings has been checked as per IT grades.

Findings

The results of process capability investigation highlight that the 3DP process as a casting solution for NFA component lies in ±5sigma (s) limit, as regards to dimensional accuracy is concerned. Further, this process ensures rapid production of pre-series industrial prototypes for NFA. Final components prepared are also acceptable as per ISO standard UNI EN 20,286-I (1995).

Originality/value

This research work presents capability of the 3DP process supported with experimental data on basis of various process parameters for the tolerance grade of NFA castings. These statistics can help to enhance the application of 3DP-based NFA casting process in commercial foundry industry.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 28 September 2012

Munish Chhabra and Rupinder Singh

The purpose of this paper is to investigate experimentally the effect of volume of casting, pouring temperature of different materials and shell mould wall thickness on…

Abstract

Purpose

The purpose of this paper is to investigate experimentally the effect of volume of casting, pouring temperature of different materials and shell mould wall thickness on the surface roughness of the castings obtained by using ZCast direct metal casting process.

Design/methodology/approach

Taguchi's design of experiment approach was used for this investigation. An L9 orthogonal array (OA) of Taguchi design which involves nine experiments for three factors with three levels was used. Analysis of variance (ANOVA) was then performed on S/N (signal‐to‐noise) ratios to determine the statistical significance and contribution of each factor on the surface roughness of the castings. The castings were obtained using the shell moulds fabricated with the ZCast process and the surface roughness of castings was measured by using the surface roughness tester.

Findings

Taguchi's analysis results showed that pouring temperature of materials was the most significant factor in deciding the surface roughness of the castings and the shell mould wall thickness was the next most significant factor, whereas volume of casting was found insignificant. Confirmation test was also carried out using the optimal values of factor levels to confirm the effectiveness of this approach. The predicted optimal value of surface roughness of castings produced by ZCast process was 6.47 microns.

Originality/value

The paper presents experimentally investigated data regarding the influence of various control factors on the surface roughness of castings produced by using ZCast process. The data may help to enhance the application of ZCast process in traditional foundry practice.

To view the access options for this content please click here
Article
Publication date: 10 October 2018

Tugdual Amaury Le Néel, Pascal Mognol and Jean-Yves Hascoët

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive…

Abstract

Purpose

The purpose of this paper is to analyze the current state of the art manufacturing techniques using sand molds for the casting industry by the means of additive manufacturing (AM). In particular, this review will cover two families of 3D printing in regards to sand mold fabrication.

Design/methodology/approach

This paper will discuss the sand casting manufacturing processes of AM by binder jetting (3D printing) and selective laser sintering. Scientific articles, patents and case studies are analyzed. Topics ranging from the technology types to the economic implications are covered.

Findings

The review investigates new factors and methods for mold design, looking at mechanical properties and cost analysis as influenced by material selection, thermal characteristics, topological optimization and manufacturing procedure. Findings in this study suggest that this topic lacks vigorous scientific research and that the case studies by manufacturers thus far are not useful.

Research limitations/implications

As demonstrated by the limited data from previous published studies, a more comprehensive and conclusive analysis is needed due to the lack of interest and resources regarding the AM of sand molds.

Practical implications

This study is a useful tool for any researchers with an interest in the field of AM of sand molds.

Social implications

Key perspectives are proposed.

Originality/value

This review highlights current gaps in this field. The review goes beyond the scientific articles by curating patents and professional case studies.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 23 June 2021

Radhwan Bin Hussin, Safian Bin Sharif, Shayfull Zamree Bin Abd Rahim, Mohd Azlan Bin Suhaimi, Mohd Tanwyn Bin Mohd Khushairi, Abdellah Abdellah EL-Hadj and Norshah Afizi Bin Shuaib

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of…

Abstract

Purpose

Rapid tooling (RT) integrated with additive manufacturing technologies have been implemented in various sectors of the RT industry in recent years with various kinds of prototype applications, especially in the development of new products. The purpose of this study is to analyze the current application trends of RT techniques in producing hybrid mold inserts.

Design/methodology/approach

The direct and indirect RT techniques discussed in this paper are aimed at developing a hybrid mold insert using metal epoxy composite (MEC) in increasing the speed of tooling development and performance. An extensive review of the suitable development approach of hybrid mold inserts, material preparation and filler effect on physical and mechanical properties has been conducted.

Findings

Latest research studies indicate that it is possible to develop a hybrid material through the combination of different shapes/sizes of filler particles and it is expected to improve the compressive strength, thermal conductivity and consequently increasing the hybrid mold performance (cooling time and a number of molding cycles).

Research limitations/implications

The number of research studies on RT for hybrid mold inserts is still lacking as compared to research studies on conventional manufacturing technology. One of the significant limitations is on the ways to improve physical and mechanical properties due to the limited type, size and shape of materials that are currently available.

Originality/value

This review presents the related information and highlights the current gaps related to this field of study. In addition, it appraises the new formulation of MEC materials for the hybrid mold inserts in injection molding application and RT for non-metal products.

Details

Rapid Prototyping Journal, vol. 27 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 14 July 2021

Luca Giorleo and Michele Bonaventi

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

Abstract

Purpose

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

Design/methodology/approach

The research was divided into two activities: simple; and complex-part production capability. In the simple-part step, the performance of gypsum powder and the minimum mold thickness that would withstand the casting process. In the complex-part step, the authors first investigated the powder removability as a function of geometry complexity and then binder jetting performance was evaluated for the case of lattice-structure fabrication.

Findings

All the geometries tested withstand the casting process demonstrating the benefits in terms of complexity part design; however, the process suffers of all the typical defect of casting as misrun, porosity and cold shut.

Originality/value

The results found in this research improve the benefits related to additive manufacturing application in industrial environment and in particular to the binder jetting technology and the rapid casting approach.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 22 August 2017

Parlad Kumar Garg, Rupinder Singh and IPS Ahuja

The purpose of this paper is to optimize the process parameters to obtain the best dimensional accuracy, surface finish and hardness of the castings produced by using…

Abstract

Purpose

The purpose of this paper is to optimize the process parameters to obtain the best dimensional accuracy, surface finish and hardness of the castings produced by using fused deposition modeling (FDM)-based patterns in investment casting (IC).

Design/methodology/approach

In this paper, hip implants have been prepared by using plastic patterns in IC process. Taguchi design of experiments has been used to study the effect of six different input process parameters on the dimensional deviation, surface roughness and hardness of the implants. Analysis of variance has been used to find the effect of each input factor on the output. Multi-objective optimization has been done to find the combined best values of output.

Findings

The results proved that the FDM patterns can be used successfully in IC. A wax coating on the FDM patterns improves the surface finish and dimensional accuracy. The improved dimensional accuracy, surface finish and hardness have been achieved simultaneously through multi-objective optimization.

Research limitations/implications

A thin layer of wax is used on the plastic patterns. The effect of thickness of the layer has not been considered. Further research is needed to study the effect of the thickness of the wax layer.

Practical implications

The results obtained by the study would be helpful in making decisions regarding machining and/or coating on the parts produced by this process.

Originality/value

In this paper, multi-objective optimization of dimensional accuracy, surface roughness and hardness of hybrid investment cast components has been performed.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 21 March 2016

Kamaljit Singh Boparai, Rupinder Singh and Harwinder Singh

The purpose of this study is to highlight the direct fabrication of rapid tooling (RT) with desired mechanical, tribological and thermal properties using fused deposition…

Downloads
2944

Abstract

Purpose

The purpose of this study is to highlight the direct fabrication of rapid tooling (RT) with desired mechanical, tribological and thermal properties using fused deposition modelling (FDM) process. Further, the review paper demonstrated development procedure of alternative feedstock filament of low-cost composite material for FDM to extend the range of RT applications.

Design/methodology/approach

The alternative materials for FDM and their processing requirements for fabrication in filament form as reported by various researchers have been summarized. The literature demonstrates the role of various post-processing techniques on surface finish of FDM prints. Further, low-cost materials for feedstock filament have been investigated experimentally to check their adaptability/suitability for commercial FDM setup. The approach was to realize the requirements of FDM (melt flow rate, flexibility, stiffness, glass transition temperature and mechanical strength), necessary for the successful run of an alternative filament. The effect of constituents (additives, plasticizers, surfactants and fillers) in polymeric matrix on mechanical, tribological and thermal properties has been investigated.

Findings

It is possible to develop composite material feedstock as filament for commercial FDM setup without changing its hardware and software. Surface finish of the parts can further be improved by applying various post-processing techniques. Most of the composite parts have high mechanical strength, hardness, thermal stability, wear resistant and better bond formation than standard material parts.

Research limitations/implications

Future research may be focused on improving the surface quality of parts fabricated with composite feedstock, solving issues related to the uniform distribution of filled materials during the fabrication of feedstock filament which in turns further increases mechanical strength, high dimensional stability of composite filament and transferring the technology from laboratory scale to various industrial applications.

Practical implications

Potential applications of direct fabrication with RT includes rapid manufacturing (RM) of metal-filled parts and ceramic-filled parts (which have complex shape and cannot be rapidly made by any other manufacturing techniques) in the field of biomedical and dentistry.

Originality/value

This new manufacturing methodology is based on the proper selection and processing of various materials and additives to form high-performance, low-cost composite material feedstock filament (which fulfil the necessary requirements of FDM process). Finally, newly developed feedstock filament material has both quantitative and qualitative advantage in RT and RM applications as compared to standard material filament.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 12 March 2018

Donghua Zhao, Weizhong Guo, Baibing Zhang and Feng Gao

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce…

Abstract

Purpose

The purpose of this paper is to review available technologies, analyse their features, propose a new approach of 3D sand mould printing based on line forming, introduce the manufacturing principle and show advantages of this approach, especially for larger parts with large Z steps in the build, such as 2 mm stepwise.

Design/methodology/approach

This paper introduces 3D sand mould printing, compares and analyses technological process and existing fabrication approaches among available technologies first. Then, a new approach of 3D sand mould printing is proposed to improve build speed. In addition, the proposed system will be analysed or benchmarked against existing systems.

Findings

A new approach based on line forming of sand mould printing is put forward by reviewing and analysing available technologies, to improve build speed from the aspect of basic moulding movement instead of optimization of moulding methods and process parameters. The theoretical calculation and analysis shows that build speed can be improved greatly, and it is more suitable for the manufacture of large-scale casting’s sand mould when considering dimensional accuracy and printing error, as well as uniformity of each layer.

Research limitations/implications

The specific implement scheme of line forming and nozzle’s specific structure of this new approach need further study.

Practical implications

Much higher build speed of 3D sand mould printing with new approach brings evident implication for moulds companies and manufacturing industry, having a far-reaching influence on the development of national economy.

Originality/value

This paper reviews available technologies and presents a new approach of 3D sand mould printing for the first time. Analysis of the new approach shows that this new method of sand mould printing can boost build speed greatly. So, its application prospect is great.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 4000