Search results
1 – 3 of 3Ranvijay Kumar, Rupinder Singh and Ilenia Farina
Three-dimensional printing (3DP) is an established process to print structural parts of metals, ceramic and polymers. Further, multi-material 3DP has the potentials to be a…
Abstract
Purpose
Three-dimensional printing (3DP) is an established process to print structural parts of metals, ceramic and polymers. Further, multi-material 3DP has the potentials to be a milestone in rapid manufacturing (RM), customized design and structural applications. Being compatible as functionally graded materials in a single structural form, multi-material-based 3D printed parts can be applied in structural applications to get the benefit of modified properties.
Design/methodology/approach
The fused deposition modelling (FDM) is one of the established low cost 3DP techniques which can be used for printing functional/ non-functional prototypes in civil engineering applications.
Findings
The present study is focused on multi-material printing of primary recycled acrylonitrile butadiene styrene (ABS), polylactic acid (PLA) and high impact polystyrene (HIPS) in composite form. Thermal (glass transition temperature and heat capacity) and mechanical properties (break load, break strength, break elongation, percentage elongation at break and Young’s modulus) have been analysed to observe the behaviour of multi-material composites prepared by 3DP. This study also highlights the process parameters optimization of FDM supported with photomicrographs.
Originality/value
The present study is focused on multi-material printing of primary recycled ABS, PLA and HIPS in composite form.
Details
Keywords
Rupinder Singh, Ranvijay Kumar and IPS Ahuja
This study aims to highlights the mechanical, thermal and melting behavior compatibility of aluminum (Al)-reinforced polyamide (PA) 6/acrylonitrile butadiene styrene (ABS)-based…
Abstract
Purpose
This study aims to highlights the mechanical, thermal and melting behavior compatibility of aluminum (Al)-reinforced polyamide (PA) 6/acrylonitrile butadiene styrene (ABS)-based functional prototypes prepared using fused deposition modeling (FDM) from the friction welding point of view. Previous studies have highlighted the use of metallic/non-metallic fillers in polymer matrix for preparations of mechanically improved FDM feedstock filaments and functional prototypes. But hitherto, very less has been reported on fabrication of functional prototypes which fulfill the compatibility of two polymers for joining/welding-based applications. The compatibility of two dissimilar polymers enables the friction welding for maintenance applications.
Design/methodology/approach
The twin screw extrusion process has been used for mechanical mixing of metallic reinforcement in polymer matrix, and final blend of reinforced polymers in the form of extruded feed stock filament has been used on FDM for printing of functional prototypes (for friction welding). The methodology involves melt flow index (MFI) investigations, differential scanning calorimetry (DSC) investigations for thermal properties, tensile and hardness testing for mechanical properties and photo micrographic investigations for metallurgical properties on extruded samples.
Findings
It was observed that the reinforced ABS and PA6 polymers have better compatibility in the terms of similar melt flow, thermal properties and can lead to the better joint efficiency with friction welding.
Originality/value
In the present work composite feed stock filament composed of ABS and PA6 with reinforcement of Al powder has been successfully developed for preparation of functional prototype in friction welding applications.
Details