Search results

1 – 10 of over 131000
Article
Publication date: 2 July 2018

Samuel Zuk, Alena Pietrikova and Igor Vehec

The purpose of this paper is to analyse the possibilities of mechanical switch replacement by capacitive film touch sensor in applications requiring high reliability and short…

Abstract

Purpose

The purpose of this paper is to analyse the possibilities of mechanical switch replacement by capacitive film touch sensor in applications requiring high reliability and short response time. Advantage of replacing mechanical switch by capacitive touch sensor is no mechanical wear and possible implementation of sensor in application where the switch could not be used or where the flexibility of the sensor substrate is required. The aim of this work is to develop a capacitive touch sensor with the advantage of maximum mechanical resistance, short response time and high sensitivity.

Design/methodology/approach

Based on various possible sensors layouts, the authors realized 18 different (14 self-capacitance and four mutual capacitance) topologies of capacitive sensor for touch applications. Three different technologies – PCB, LTCC and polymer technology – were used to characterize sensor’s behaviour. For precise characterization of different layouts realized on various substrates, the authors used integrated circuit FDC2214 capacitance-to-digital converter.

Findings

Sensing range of the capacitive touch (proximity) sensor is affected by the per cent of area covered by the sensor, and it does not depend on topology of sensor. The highest sensing range offers PCB technology. Flexible substrates can be used as proper substituent to rigid PCB.

Originality/value

The novelty of this work lies in finding the touch capacitive sensors that allow shorter switching times compared to standard mechanical switches.

Details

Microelectronics International, vol. 35 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 21 December 2017

Wenli Zhang, Fengchun Tian, An Song, Zhenzhen Zhao, Youwen Hu and Anyan Jiang

This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose.

Abstract

Purpose

This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose.

Design/methodology/approach

The wide spectral light is used as the sensing medium in the e-nose system based on continuous wide spectrum (CWS) odor sensing, and the sensing response of each sensing element is the change of light intensity distribution.

Findings

Experimental results not only verify the feasibility and effectiveness of the proposed system but also show the effectiveness of least square support vector machine (LSSVM) in eliminating system errors.

Practical implications

Theoretical model of the system was constructed, and experimental tests were carried out by using NO2 and SO2. System errors in the test data were eliminated using the LSSVM, and the preprocessed data were classified by euclidean distance to centroids (EDC), k-nearest neighbor (KNN), support vector machine (SVM), LSSVM, respectively.

Originality/value

The system not only has the advantages of current e-nose but also realizes expansion of sensing array by means of light source and the spectrometer with their wide spectrum, high resolution characteristics which improve the detection accuracy and realize real-time detection.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 1999

Hal Philipp

While the transference of charge is an essential aspect of every capacitance sensor, a relatively new form of sensor makes overt use of the principle of charge conservation first…

Abstract

While the transference of charge is an essential aspect of every capacitance sensor, a relatively new form of sensor makes overt use of the principle of charge conservation first deduced by Watson in the 1740s. Updated to use a microcontroller, mosfet switches, fet‐input opamps and band gap references, the principle of charge transference can be used to create an extremely sensitive and stable device with unique properties that transcend those of more pedestrian capacitance sensors. Also known as “QT” sensors, charge transfer sensors can have a dynamic range spanning many decades with noise floors in the sub‐femtofarad regime, allowing differential resolutions of mere fractions of a femtofarad. Such sensors are proving to have unique applications considered heretofore impossible, while also proving themselves as replacements for much more expensive sensing systems using photoelectric, acoustic, RF, and optical imaging techniques.

Details

Sensor Review, vol. 19 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 February 1992

Radislav Potyrailo and Sergei Golubkov

Achievements in guided wave optics have had a great influence on many areas of technology for several years. Fibre optic communication links, sensors for various parameters…

Abstract

Achievements in guided wave optics have had a great influence on many areas of technology for several years. Fibre optic communication links, sensors for various parameters, recently developed distributed temperature sensors, integrated optical switches, etc. are all applications that are commercially available. The field of analytical chemistry is no exception in this growing technology. In order to compete with well‐established chemical‐sensing instrumentation, optical waveguide chemical sensors (OWCSs) must show all the qualities of such instrumentation. OWCSs combine well‐known features of sensors, based on waveguide optics, with optical methods of chemical analysis and offer advantages over other types of chemical sensor. OWCSs are electrically passive, corrosion‐resistant, can respond to analytes for which other chemical sensors are not available, and referencing can be carried out optically. They allow multicomponent measurements at several wavelengths, have a common technology for fabrication of sensors for different chemical and physical parameters and are easily compatible with telemetry etc. Further, only OWCSs are capable of distributed sensing. However, interference from ambient light, temperature, long‐term instability, relatively slow response time, and limited dynamic range may be a problem for some types of OWCS. These disadvantages can be considerably reduced using various methods.

Details

Sensor Review, vol. 12 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 1 June 2004

Vladimir Brajović and Takeo Kanade

When a sensor device is packaged together with a CPU, it is called a “smart sensor.” The sensors really become smart when the tight integration of sensing and processing results…

Abstract

When a sensor device is packaged together with a CPU, it is called a “smart sensor.” The sensors really become smart when the tight integration of sensing and processing results in an adaptive sensing system that can react to environmental conditions and consistently deliver useful measurements to a robotic system even under the harshest of the conditions. We illustrate this point with an example from our recent work on illumination‐adaptive algorithm for dynamic range compression that is well suited for an on‐chip implementation resulting in a truly smart image sensor. Our method decides on the tonal mapping for each pixel based on the signal content in pixel's local neighborhood.

Details

Sensor Review, vol. 24 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 6 June 2008

Yee Ming Chen and Shu Hao Chang

The purpose of this paper is to present a model developed for emergent formation of multi‐unmanned aerial vehicles (UAVs) into functional teams that cooperatively complete a…

Abstract

Purpose

The purpose of this paper is to present a model developed for emergent formation of multi‐unmanned aerial vehicles (UAVs) into functional teams that cooperatively complete a mission in which they search for specific mobile targets and escape obstacles.

Design/methodology/approach

The design and development of distributed UAVs simulator use agent‐based platform employing a decentralized control which follows the flocking behavior‐based design philosophy.

Findings

The results of the simulation indicate that the emergent behavior‐based search procedure for UAVs is autonomous, effective and robust. It is especially well suited for emergent teams to quickly solve dynamic teaming and task allocation.

Practical implications

The development of a UAV is expensive, and a small error in automatic control results in a crash. Therefore, the platform is useful to develop and verify the coordination behavior of UAVs through software simulation prior to real testing.

Originality/value

The proposed emergent behavior simulated environment is working on an agent‐based UAV simulated platform, and hence, it naturally adapts to the behavior of a distributed and concurrent situation. The authors' can easily improvise the execution environment without changing the UAV simulator.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 September 2004

Christine Connolly

A new material has been developed consisting of metal particles intimately distributed in a polymer. This composite becomes a conductor under compression, tension or twisting…

Abstract

A new material has been developed consisting of metal particles intimately distributed in a polymer. This composite becomes a conductor under compression, tension or twisting, exhibiting a resistive range of one trillion to one, and following a smooth, repeatable curve. It has been shown that the conductivity arises from the quantum tunnelling effect. The material is used in a wide range of switches and sensors, as a replacement in standard components and also in novel applications.

Details

Sensor Review, vol. 24 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 June 2000

Charles D. Laughlin

There has been little thought given in science to the impact of direct brain‐machine interfacing upon the future development of human consciousness. Even less thought has been…

Abstract

There has been little thought given in science to the impact of direct brain‐machine interfacing upon the future development of human consciousness. Even less thought has been given to the possibilities for both optimizing and thwarting development in the cyborg child. A neurocognitive model of the evolution of cyborg consciousness is summarized, and from this model grounded speculations are offered pertaining to the future development of the higher cognitive functions in the cyborg child. It will be shown that cybernetic implants are “multistable”; that is, the artificial intelligence (AI) component of the cyborg brain‐machine linkage may function to condition development along ideological lines (the brain conditioned by the “ideological chip”), or may operate to open up neurocognitive development to new and heretofore unrealized limits (the brain’s development optimized by the “guru programme”). Development of the cyborg child may be conditioned in the interests of ideological concerns, or may lead to a consciousness that easily transcends all forms of ideology. Application of the guru programme may foster the emergence of new levels of cognitive complexity and information processing (à la Piagetian and neo‐Piagetian theory) that in turn allows new strategies of adaptation previously beyond human comprehension. The ethical and regulatory problems raised by cyborg technologies are addressed.

Details

Foresight, vol. 2 no. 3
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 7 September 2015

Mariam Alnuaimi, Khaled Shuaib, Klaithem Alnuaimi and Mohammed Abed-Hafez

This paper aims to propose a new node energy-efficient algorithm with energy threshold to replace cluster heads. The proposed algorithm uses node ranking to elect cluster heads…

Abstract

Purpose

This paper aims to propose a new node energy-efficient algorithm with energy threshold to replace cluster heads. The proposed algorithm uses node ranking to elect cluster heads based on energy levels and positions of the nodes in reference to the base station (BS) used as a sink for gathered information. Because the BS calculates the number of rounds a cluster head can remain for as a cluster head in advance, this reduces the amount of energy wasted on replacing cluster heads each round which is the case in most existing algorithms, thus prolonging the network lifetime. In addition, a hybrid redundant nodes duty cycle is used for nodes to take turn in covering the monitored area is shown to improve the performance further.

Design/methodology/approach

Authors designed and implemented the proposed algorithm in MATLAB. The performance of the proposed algorithm was compared to other well-known algorithms using different evaluation metrics. The performance of the proposed algorithm was enhanced over existing ones by incorporating different mechanisms such as the use of an energy-based threshold value to replace CHs and the use of a hybrid duty-cycle on nodes.

Findings

Through simulation, the authors showed how the proposed algorithm outperformed PEGASIS by 15 per cent and LEACH by almost 70 per cent for the network life-time criterion. They found that using a fixed pre-defined energy threshold to replace CHs improved the network lifetime by almost 15 per cent. They also found that the network lifetime can be further improved by almost 7 per cent when incorporating a variable energy threshold instead of a fixed value. In addition to that, using hybrid-redundant nodes duty-cycle has improved the network lifetime by an additional 8 per cent.

Originality/value

The authors proposed an energy-efficient clustering algorithm for WSNs using node ranking in electing CHs and energy threshold to replace CHs instead of being replaced every round.

Details

International Journal of Pervasive Computing and Communications, vol. 11 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 24 October 2023

WenFeng Qin, Yunsheng Xue, Hao Peng, Gang Li, Wang Chen, Xin Zhao, Jie Pang and Bin Zhou

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation…

Abstract

Purpose

The purpose of this study is to design a wearable medical device as a human care platform and to introduce the design details, key technologies and practical implementation methods of the system.

Design/methodology/approach

A multi-channel data acquisition scheme based on PCI-E (rapid interconnection of peripheral components) was proposed. The flexible biosensor is integrated with the flexible data acquisition card with monitoring capability, and the embedded (device that can operate independently) chip STM32F103VET6 is used to realize the simultaneous processing of multi-channel human health parameters. The human health parameters were transferred to the upper computer LabVIEW by intelligent clothing through USB or wireless Bluetooth to complete the transmission and processing of clinical data, which facilitates the analysis of medical data.

Findings

The smart clothing provides a mobile medical cloud platform for wearable medical through cloud computing, which can continuously monitor the body's wrist movement, body temperature and perspiration for 24 h. The result shows that each channel is completely accurate to the top computer display, which can meet the expected requirements, and the wearable instant care system can be applied to healthcare.

Originality/value

The smart clothing in this study is based on the monitoring and diagnosis of textiles, and the electronic communication devices can cooperate and interact to form a wearable textile system that provides medical monitoring and prevention services to individuals in the fastest and most accurate way. Each channel of the system is precisely matched to the display screen of the host computer and meets the expected requirements. As a real-time human health protection platform technology, continuous monitoring of human vital signs can complete the application of human motion detection, medical health monitoring and human–computer interaction. Ultimately, such an intelligent garment will become an integral part of our everyday clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 131000